a2 United States Patent

Edde et al.

US009201766B2

US 9,201,766 B2
*Dec. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54) PRODUCER GRAPH ORIENTED
PROGRAMMING FRAMEWORK WITH
SCENARIO SUPPORT

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

Applicant: MUREX S.A.S., Paris (FR)

Inventors: Elias Edde, Paris (FR); Fady Chamieh,

Paris (FR)

Assignee: MUREX S.A.S., Paris (FR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 220 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/710,372

Filed: Dec. 10, 2012

Prior Publication Data
US 2013/0104109 A1 Apr. 25,2013

Related U.S. Application Data

Continuation of application No. 11/607,199, filed on

Dec. 1, 2006, now Pat. No. 8,332,827.

Int. Cl1.
GO6F 9/44
GO6F 11736
U.S. CL
CPC

(2006.01)
(2006.01)

GOGF 11/3668 (2013.01); GOGF 9/4428
(2013.01); GOGF 9/4436 (2013.01); GO6F
11/36 (2013.01)

Field of Classification Search

USPC
See application file for

................................. 717/135
complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,558,413 A 12/1985 Schmidt et al.
5,133,063 A 7/1992 Naito et al.
5,155,836 A 10/1992 Jordan et al.
5,313,387 A 5/1994 McKeeman et al.
5,371,851 A 12/1994 Pieper et al.
5,410,696 A 4/1995 Seki et al.
5,481,740 A 1/1996 Kodosky
5,481,741 A 1/1996 McKaskle et al.
5,490,246 A 2/1996 Brotsky et al.
(Continued)
FOREIGN PATENT DOCUMENTS
BR PI0719730 A2 3/2014
CN 101589366 B 11/2013
(Continued)
OTHER PUBLICATIONS

Huang et al. (Event Based Traceability for Managing Evolutionary
Change, IEEE Transactions on Software Engineering, vol. 29 Issue 9,
Sep. 2003).*

(Continued)

Primary Examiner — Hang Pan
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

(57) ABSTRACT

Embodiments of a producer graph oriented programming
framework with scenario support have been presented. In one
embodiment, a request to evaluate potential impacts by a
change on an application program is received. The applica-
tion program includes a set of producers, each having at least
an instance and a method associated with the instance.
Responsive to the request, the application program may be
simulated with the change while the existing states and exist-
ing outputs of the producers are preserved.

22 Claims, 63 Drawing Sheets

RUNTIME WITH PRODUCER GRAPH ORIENTED

PROGRAMMING SUPPORT 360
PRODUCER DEPENDENCY
DECLARATIONS FOR METHODS IN NEW SCENARIO MODULE 337
OBJECT-ORIENTED SOURCE CODE 320 1
i SCENARIO TRACKING STRUCTURE 338
{ SCENARIO INSTANTIATION /AR
| INFORMATION 328 H
AUTOMATED PRODUCER GRAPH -
GENERATION MODULE 365 i
CURRENT SET OF ONE OR MORE 1
STRESSED PRODUCERS WHOSE
OUTPUTS ARE OF INTEREST 325

OUTPUT OF SOURCE PRODUCERS 350

PRODUCER GRAPH(S) STRUCTURE 380

{ INCREMENTAL [PRODUCER
EXECUTION OUTPUT
MARKING 382 CACHING 384

OUTPUTS OF INDEPENDENT
PRODUCERS SET IN SOURCE CODE 352
(producers that do not have any
dependencies and that are the end nodes of
the current producer graph (constants, default
values, e1¢.))

OVERRIDDEN PRODUCER OUTPUTS
354 — outputs of independent producers
and/or dependent producers whose outputs
have been overridden

5
L1 @DUCER GRAPH EXECUTION MODULE },___i
370

.

)

OVERRIDE
PROPERTY
PRODUCER OUTPUT
MODULE 392

OVERRIDE METHOD
PRODUCER OUTPUT
MODULE 394

OVERRIDE PRODUCER OUTPUT MODULE 390

US 9,201,766 B2

Page 2
(56) References Cited 2005/0125776 Al 6/2005 Kothari et al.
2005/0182782 Al 8/2005 Anderson
U.S. PATENT DOCUMENTS 2005/0210445 Al 9/2005 Gough et al.
2005/0246681 Al 11/2005 Little et al.
2005/0273773 Al 12/2005 Gold et al.
2’;‘3133?2 X 21906 Rogersetal 2006/0004851 Al 1/2006 Gold et al
5’524 205 A 6/1996 TLomet et al. 2006/0015857 Al 1/2006 Gold et ql.
5’652:909 A 7/1997 KOdOSky 2006/0053414 Al 3/2006 Bhandari et al.
5:659,747 A 8/1997 Naka]lma 2006/0059461 Al 3/2006 Baker et al._
5.758.160 A 5/1998 Meclnerney et al. 2006/0074866 Al 4/2006 Chamberlain et al.
5’819:293 A 10/1998 Comer et al. 2006/0075383 Al 4/2006 MOOI'thy. et al.
5:822,593 A 10/1998 Lamping et al. 2006/0080660 Al 4/2006 Radhakrishnan
5.838.976 A 11/1998 Summers 2007/0162903 Al 7/2007 Babb, Il et al.
5’883’623 A 3/1999 Cseri 2007/0234276 Al 10/2007 Ottoni et al.
5:893:123 A 4/1999 Tuinenga et al. 2008/0094399 Al 4/2008 Heinkel et al.
5966,072 A * 10/1999 Stanfill et al. 340/440 2008/0098375 Al 4/2008 Isard
5978.830 A 11/1999 Nakaya et al. 2008/0134138 Al 6/2008 Chamieh et al.
5.990.906 A 11/1999 Hudson et al. 2008/0134152 Al 6/2008 Edde e_:t al.
6:003:037 A 12/1999 Kassabgi et al. 2008/0134161 Al 6/2008 Charmeh et al.
6.026.235 A 2/2000 Shaughnessy et al. 2008/0134207 Al 6/2008 Charm_eh et al.
6’067,415 A 5/2000 Uchihira 2012/0266146 Al 10/2012 Charmeh etal.
6’111:575 A 8/2000 Martinez et al. 2013/0061207 Al 3/2013 Charmeh et al.
6’145 121 A 11/2000 Levy etal. 2013/0232475 Al 9/2013 Chamieh et al.
6:223:171 Bl 4/2001 Chaudhuri et al. 2014/0137086 Al 5/2014 Chamich et al.
6,233,733 Bl 5/2001 Ghosh
6,385,770 Bl 5/2002 Sinander FOREIGN PATENT DOCUMENTS
6,407,753 Bl 6/2002 Budinsky et al.
6,427,234 Bl 7/2002 Chambers et al. CN 101601012 B 3/2014
6,493,868 Bl 12/2002 Dasilva et al. CN 101617292 B 9/2014
6,571,388 Bl 5/2003 Venkatraman et al. EP 0777181 Al 6/1997
6,618,851 Bl 9/2003 Zundel et al. EP 0883057 A2 12/1998
6,665,866 B1 12/2003 Kwiatkowski et al. EP 1942411 A2 7/2008
6,763,515 Bl 7/2004 Vazquez et al. EP 1942411 A3 7/2008
6,826,523 B1 11/2004 Guy et al. EP 1952216 A0 8/2008
6,826,752 B1 11/2004 Thornley et al. EP 1958062 Bl 7/2009
6,889,227 Bl 5/2005 Hamilton et al. EP 1942411 B1 2/2012
6,957,191 B1 10/2005 Belcsak et al. EP 2041655 Bl 3/2014
6,959,429 B1 10/2005 Hatcher et al. EP 2365435 Bl 4/2014
6,966,013 B2 11/2005 Blum et al. EP 2365436 Bl 7/2014
6,995,765 B2 2/2006 Boudier EP 1952216 Bl 9/2014
7,017,084 B2 3/2006 Ngetal. P 06-332785 12/1994
7,039,923 B2 5/2006 Kumar et al. JP H07-013766 A 1/1995
7,055,130 B2 5/2006 Charisius et al. JP 2000514219 A 10/2000
7,096,458 B2* 8/2006 Batesetal. 717/124 JP 2001005678 A 1/2001
7,143,392 B2 11/2006 Iietal. JP 5354601 B2 11/2013
7,200,838 B2 4/2007 Kodosky et al. P 5354602 B2 11/2013
7,203,743 B2 4/2007 Shah-Heydari JP 5354603 B2 11/2013
7,299,450 B2 11/2007 Livshits et al. RU 2206119 C2 6/2003
7,367,015 B2 4/2008 Evans et al. RU 2245578 C2 1/2005
7,831,956 B2 11/2010 Kimmerly RU 2435201 C2 11/2011
7,865,872 B2 1/2011 Chamieh et al. RU 2438161 C2 12/2011
7,917,898 B2 3/2011 Zhao et al. RU 2445682 C2 3/2012
8,191,052 B2 5/2012 Chamieh et al. WO 9800791 Al 1/1998
8,307,337 B2 11/2012 Chamich et al. WO 0101206 A2 1/2001
8,332,827 B2 12/2012 Edde et al. WO 0201359 A2 1/2002
8,607,207 B2 12/2013 Chamich et al. WO 2005121954 A1 12/2005
8,645,929 B2 2/2014 Chamieh et al. WO 2008064899 A2 6/2008
2001/0001882 Al 5/2001 Hamilton et al. WO 2008064899 A3 6/2008
2002/0072890 Al 6/2002 Crouse, Il et al. WO 2008064900 A2 6/2008
2002/0184401 Al 12/2002 Kadel et al. WO 2008064901 A2 6/2008
2002/0188616 Al 12/2002 Chinnici et al. WO 2008064901 A3 6/2008
2003/0014464 Al 1/2003 Deverill et al. WO 2008064902 A2 6/2008
2003/0033132 Al 2/2003 Algieri et al. WO 2008064902 A3 6/2008
2003/0084063 Al 5/2003 DelMonaco et al. WO 2008064900 A3 7/2008
2003/0084425 Al 5/2003 Glaser
2003/0106040 Al 6/2003 Rubin et al. OTHER PUBLICATIONS
2003/0145125 Al 7/2003 Horikawa
2004/0073892 Al 4/2004 TFallah et al. Second Office Action, Chinese Application No. 200780050449.7,
2004/0143819 Al 7/2004 Cheng et al. dated Mar. 4, 2013, 8 pages.
2004/0172626 Al 9/2004 Jalan et al. Non-Final Office Action, U.S. Appl. No. 13/840,900, dated Jul. 16,
2004/0205524 Al 10/2004 Richter et al. 2013, 48 pages.
2004/0221262 Al 11/2004 Hampapuram et al. Third Office Action, Chinese Application No. 200780050596.4,
2004/0230770 Al 11/2004 Odani et al. dated Aug. 6, 2013, 13 pages.
2004/0258187 Al 12/2004 Jeong et al. Decision of Grant, Japanese Application No. 2009538644, dated
2004/0268327 Al 12/2004 Burger et al. Aug. 5, 2013, 3 pages.
2005/0015353 Al 1/2005 Kumar et al. Decision of Grant, Japanese Application No. 2009538645, dated
2005/0081105 Al 4/2005 Wedel et al. Aug. 5, 2013, 3 pages.
2005/0097464 Al 5/2005 Graeber et al. Decision of Grant, Japanese Application No. 2009538646, dated

2005/0114842 Al 5/2005 Fleehart et al. Aug. 5, 2013, 3 pages.

US 9,201,766 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Third Office Action, Chinese Application No. 200780050659.6,
dated May 28, 2013, 7 pages.

Communication under Rule 71(3) EPC, European Application No.
07856310.3, dated Apr. 19, 2013, 241 pages.

Notification on the Grant for Patent Right, Chinese Application No.
200780050449.7, dated Aug. 28, 2013, 4 pages.

Notice of Allowance, U.S. Appl. No. 13/455,756, dated Oct. 1,2013,
70 pages.

Notice of Allowance, U.S. Appl. No. 13/840,900, dated Oct. 10,
2013, 30 pages.

Communication under Rule 71(3) EPC, European Application No.
07856310.3, dated Sep. 27, 2013, 240 pages.

Fourth Office Action, Chinese Application No. 200780050659.6,
dated Nov. 5, 2013, 8 pages.

Communication under Rule 71(3) EPC, European Application No.
11167918.9, dated Oct. 7, 2013, 241 pages.

Communication under Rule 71(3) EPC, European Application No.
11167913.0, dated Oct. 11, 2013, 245 pages.

Communication under Rule 71(3) EPC, European Application No.
07856311.1, dated Oct. 14, 2013, 179 pages.

Notification on the Grant for Patent Right, Chinese Application No.
200780050596 4, dated Dec. 3, 2013, 4 pages.

Communication under Rule 71(3) EPC, European Application No.
07856311.1, dated Apr. 3, 2014, 179 pages.

Fifth Office Action, Chinese Application No. 200780050659.6, dated
Mar. 4, 2014, 3 pages.

Notification on the Grant for Patent Right, Chinese Application No.
200780050659.6, dated Jun. 9, 2014, 4 pages.

Communication under Rule 71(3) EPC, European Application No.
11167918.9, dated Feb. 18, 2014, 241 pages.

Decision to grant a European patent pursuant to Article 97(1) EPC,
European Application No. 11167918.9, dated Jul. 3, 2014, 2 pages.
Decision to grant a European patent pursuant to Article 97(1) EPC,
European Application No. 07856310.3, dated Feb. 20, 2014, 2 pages.
Decision to grant a European patent pursuant to Article 97(1) EPC,
European Application No.07856311.1, dated Aug. 28,2014, 2 pages.
International Preliminary Report on Patentability, PCT/EP2007/
010409, dated Jun. 3, 2009, 15 pages.

International Preliminary Report on Patentability, PCT/EP2007/
010407, dated Jun. 3, 2009, 13 pages.

International Preliminary Report on Patentability, PCT/EP2007/
010410, dated Jun. 3, 2009, 9 pages.

International Preliminary Report on Patentability, PCT/EP2007/
010408, dated Jun. 3, 2009, 9 pages.

Non-Final Office Action, U.S. Appl. No. 11/607,216, dated Apr. 8,
2010, 35 pages.

Mohan et al., “Efficient Commit Protocols for the Tree of Processes
Model of Distributed Transactions,” ACM, New York, NY, USA, vol.
19, Issue 2, Apr. 1985, pp. 40-52.

Jagadish et al., “Recovering from Main-Memory Lapses,” Citeseer,
1993, pp. 1-16.

1st Examination Report, FEuropean Patent Application No.
07254672 .4, dated May 19, 2009, 8 pgs.

Result of Consultation, European Patent Application No. 07254672.
4, dated Sep. 24, 2010, 15 pgs.

Summons to Attend Oral Proceedings, European Patent Application
No. 07254672.4, dated Jun. 28, 2010, 11 pgs.

1st Examination Report, FEuropean Patent Application No.
07856310.3, dated May 15, 2009, 9 pgs.

Result of Consultation, European Patent Application No. 07856310.
3, dated Sep. 24, 2010, 3 pgs.

Summons to Attend Oral Proceedings, European Patent Application
No. 07856310.3, dated Jun. 29, 2010, 10 pgs.

1st Examination Report, FEuropean Patent Application No.
07856311.1, dated May 28, 2009, 8 pgs.

Result of Consultation, European Patent Application No. 07856311.
1, dated Sep. 24, 2010, 3 pgs.

Summons to Attend Oral Proceedings, European Patent Application
No. 07856311.1, dated Jun. 29, 2010, 11 pgs.

Bill Venners, “The Linking Model”, Inside the Java Virtual Machine,
Chapter 8, 1999, pp. 1-61, reprinted from http://www.artima.com/
insidejvm/ed2/linkmodP-html on Sep. 20, 2010, Tata McGraw-Hill.
Bill Venners, “Thread Synchronization”, Inside the Java Virtual
Machine, Chapter 20, pp. 1-11, reprinted from http://www.artima.
com/insidejvm/ed2/threadsynchPhtml on Sep. 20, 2010.

Notice of Allowance, U.S. Appl. No. 11/607,216, dated Nov. 19,
2010, 29 pages.

Official Action, Russian Application No. 2009125011, dated Oct. 13,
2010, 12 pages.

Official Action, Russian Application No. 2009125050, dated Oct. 4,
2010, 25 pages.

Official Action, Russian Application No. 2009125013, dated Nov.
13, 2010, 17 pages.

Decision on Grant, Russian Application No. 2009125050, dated May
23, 2011, 27 pages.

Decision on Grant, Russian Application No. 2009125011, dated Jun.
21,2011, 22 pages.

Extended European Search Report, Application No. 11167913.0,
dated Oct. 24, 2011.

Rong Zhou et al., “Breadth-first heuristic search”, pp. 385-408, Dec.
1, 2004, Artificial Intelligence 170 (2006), Elsevier B.V.

Decision on Grant, Russian Application No. 2009125013, dated Oct.
4, 2011, 26 pages.

Extended European Search Report, Application No. 11167918.9,
dated Nov. 7, 2011.

Communication under Rule 71(3), Furopean Application No.
07254672 .4, dated Sep. 6, 2011.

Non-Final Office Action, U.S. Appl. No. 11/607,196, dated Dec. 21,
2011, 49 pages.

Non-Final Office Action, U.S. Appl. No. 11/607,199, dated Jan. 9,
2012, 37 pages.

Jane Cleland-Huang et al., “Event Based Traceability for Managing
Evolutionary Change”, Sep. 2003, 15 pages, IEEE Transactions on
Software Engineering, vol. 29, No. 9, IEEE Computer Society.
Communication pursuant to Article 94(3) EPC, European Applica-
tion No. 07856311.1, dated Jul. 25, 2011, 7 pages.

Communication pursuant to Article 94(3) EPC, European Applica-
tion No. 07856310.3, dated Jul. 25, 2011, 8 pages.

Notice of Allowance, U.S. Appl. No. 11/633,098, dated Feb. 29,
2012, 42 pages.

Decision to grant a European patent pursuant to Article 97(1) EPC,
Application No. 07254672 4, dated Jan. 26, 2012, 2 pages.

First Office Action, Chinese Application No. 200780050596 .4, dated
Feb. 29, 2012, 8 pages.

First Office Action, Chinese Application No. 200780050449.7, dated
Apr. 6, 2012, 19 pages.

First Office Action, Chinese Application No. 200780050659.6, dated
Apr. 23,2012, 11 pages.

Notification of Reasons for Rejection, Japanese Application No.
2009538645, dated Jul. 5, 2012, 7 pages.

Notification of Reasons for Rejection, Japanese Application No.
2009538644, dated Jul. 5, 2012, 5 pages.

Notification of Reasons for Rejection, Japanese Application No.
2009538646, dated Jul. 5, 2012, 5 pages.

Notice of Allowance, U.S. Appl. No. 11/607,196, dated Aug. 14,
2012, 21 pages.

Notice of Allowance, U.S. Appl. No. 11/607,199, dated Sep. 26,
2012, 22 pages.

Second Office Action, Chinese Application No. 200780050659.6,
dated Dec. 25, 2012, 9 pages.

Second Office Action, Chinese Application No. 200780050596 4,
dated Jan. 24, 2013, 14 pages.

Erich Gamma et al., “Design Patterns—Flements of Reusable Object
Oriented Software,” Addison Wesley, 1995.

Mark Grand, “Patterns in Java,” Wiley Computer Publishing, 1998.
“A Typesafe Enum Facility for the Java Progamming Language:
Proposed Final Draft,” Jul. 12, 2004, 6 pages, Sun Microsystems,
Inc., Palo Alto, California.

“An enhanced for loop for the Java Programming Language, Pro-
posed Final Draft,” Jul. 12, 2004, 4 pages, Sun Microsystems, Inc.,
Palo Alto, California.

US 9,201,766 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

“Autoboxing and Auto-Unboxing support for the Java Programming
Language, Proposed Final Draft,” Jul. 12, 2004, 7 pages, Sun
Microsystems, Inc., Palo Alto, California.

“Dataflow language,” Nov. 25, 2006, S pages, downloaded from
http://en.wikipedia.org/w/index.php?title=Dataflow_ language&
printable=yes on Nov. 29, 2006.

“dataflow language,” 4 pages, downloaded from http://www.an-
swers.com/main/ntquery?tname=dataflow% 2Dlanguage
&print=true on Nov. 29, 2006.

“Dataflow Programming,” Apr. 24, 2005, 2 pages, downloaded from
http://c2.com/cgi/wiki?DataflowProgramming on Nov. 29, 2006.
“javadoc—The Java API Documentation Generator,” 2002, 54 pages,
Sun Microsystems, Inc., downloaded from http://java.sun.com/j2se/
1.5.0/docs/tooldocs/windows/javadoc.html on Nov. 28, 2006.
“JSR175: A Program Annotation Facility for the Java™ Program-
ming Language: Proposed Final Draft,” Aug. 12,2004, 12 pages, Sun
Microsystems, Inc., Palo Alto, California.

“LabVIEW FAQs,” 2006, 3 pages, National Instruments Corpora-
tion, downloaded from http://www.ni.com/labview/faq.htm on Nov.
29, 2006.

“LabVIEW,” Nov. 24, 2006, 8 pages, downloaded from http://en.
wikipedia.org/w/index.php?title=LabVIEW &printable=yes on Nov.
29, 2006.

“Lucid (ID:960/1uc002) dataflow language,” 9 pages, downloaded
from http://hopl.murdoch.edu.au/showlanguage?2.prx?exp=960 on
Dec. 1, 2006.

“Quals: Programming Languages,” Jan. 1, 2005, 43 pages, down-
loaded from http://www.cs.wm.edw/~coppit/wiki/index.
php?title=Quals: _ Programming_ Languages&printable=yes on
Dec. 1, 2006.

“Visual programming language,” Nov. 29, 2006, 4 pages, down-
loaded from http://en.wikipedia.org/w/index.php?title=Visual__pro-
gramming_ language&printable=yes on Nov. 29, 2006.

Gilad Bracha et al., “Adding Generics to the Java Programming
Language: Participant Draft Specification,” Apr. 27, 2001, 18 pages.
Command pattern, Nov. 18, 2006, 7 pages, downloaded from http://
en.wikipedia.org/w/index php?title=Command__pattern&
printable=yes on Nov. 29, 2006.

Martin Fowler, “Inversion of Control Containers and the Dependency
Injection pattern,” Jan. 23, 2004, 21 pages, downloaded from http://
martinfowler.com/articles/injection.html on Aug. 6, 2006.

James Gosling et al., “The Java Language Specification, Third Edi-
tion,” May 2005, 684 pages, Addison-Wesley.

Finn Haugen, “Introduction to LabVIEW Simulation Module 2.0,”
Oct. 29, 2006, 28 pages, downloaded from http://techteach.no/pub-
lications/labview/sim__module/2__0/index.htm on Nov. 29, 2006.
Hibernate 3.0, 2005, 4 pages, JBoss Inc.

Hibernate Annotations, Reference Guide, Version: 3.2.0 CR1, May
13, 2006, 57 pages.

Hibernate EntityManager, User Guide, Version: 3.2.0 CR1, May 13,
2006, 52 pages.

Hibernate Reference Documentation, Version: 3.1.1, Jan. 18, 2006,
223 pages.

Hibernate Tools, Reference Guide, Version: 3.1.0.beta5, Aug. 22,
2005, 43 pages.

Invitation to Pay Additional Fees (includes Partial International
Search Report), PCT/EP2007/010407, dated Jun. 10, 2008, 5 pages.
ISR and Written Opinion, PCT/EP2007/010407, dated Oct. 24,2008,
19 pages.

ISR and Written Opinion, PCT/EP2007/010408, dated Jun. 10, 2008,
13 pages.

ISR and Written Opinion, PCT/EP2007/010409, dated Jun. S, 2008,
23 pages.

International Search Report and Written Opinion, Application No.
PCT/EP2007/010410, dated Jun. 4, 2008, 14 pages.

Rod Johnson et al., “Spring, java/j2ee Application Framework, Ver-
sion 2.0 MS5,” 2004-2006, 442 pages.

Rod Johnson, “Introduction to the Spring Framework,” May 2005, 27
pages, downloaded from http://www.theseverside.com/tt/articles/
content/SpingFramework/article.html on Jun. 19, 2006.

Memento pattern, Nov. 20, 2006, 3 pages, downloaded from http://
en.wikipedia.org/w/index php?title=Memento__ pattern&
printable=yes on Nov. 29, 2006.

NHibernate Reference Documentation, Version: 1.0.2, Jan. 15, 2006,
151 pages.

Partial European Search Report, Application No. 07254672.4, dated
Jun. 12, 2008, 17 pages.

Seam—Contextual Components, A Framework for Java EE 5, Ver-
sion: 1.0.CR2, Apr. 2006, 138 pages.

Non-Final Office Action, U.S. Appl. No. 13/669,837, dated Dec. 11,
2014, 51 pages.

Non-Final Office Action, U.S. Appl. No. 14/160,271, dated Sep. 1,
2015, 58 pages.

Non-Final Office Action, U.S. Appl. No. 13/669,837, dated Jul. 30,
2015, 25 pages.

* cited by examiner

US 9,201,766 B2

Sheet 1 of 63

Dec. 1, 2015

U.S. Patent

v11 S490NA0dd
JYONW ¥O 0¥dZ 40 13S

CIT S¥9ONdodd
TIONW 4O O¥dZ 40 L3S

VI N0

JONVLSNI LVHL

HLIM 41VIOOSSY JOHLIN
V ANV ‘SSV1D LVHL 40
AONVLISNI NV ‘SSVID V LSVAT
LV SHI4ILNAAl ¥401d0dd

V 2¥dHM ‘S¥A0NA0dd
YIHLO FION 40 OddZ YO L3S
V 40 SLNd1010 NO SANdd3d

Y \

801 (VLVQ)
FONVLSNI

YHINAOUd NHAID V 40
INd1NO JHL LVHL ANILNNY
LV SAILNAAI NOLLVHVTO3d
ADNHANAIA ¥HONA0Yd
HHL TYIHM ‘AOHLIN NIAID
dHL 404 901 NOILVEVIOdd
AINIANAJIA ¥I0NA0dd

™ #01 QOHIAW NAAID V

0T NOILLINIAHA SSVTIO
001 40D 40dNO0S A4 LNITIO-LOAfdO

US 9,201,766 B2

Sheet 2 of 63

Dec. 1, 2015

U.S. Patent

; 4901 NOILVHVTDEd
m>UZmDmem_Qmm_UDDOM

=B}

-H901 NOILYAVTOT
ADNIANAdId ¥I2nNA0d

[So e

{901 NOLLVIVYT124d
1 ADNIANAdTd 330Na0¥d

1
.
'
'
1
'
1
'
1
)
]
]
]
]
]
]
|
1
'
I
)
)
1
)
)
)
1
1
1
i
]
'
t—

- -~

-~ -

1 TANOI

D901 NOILVYV1JdA
ADNAANIdId ¥92nd0dd

; 4901 NOILVYEVTDdd
1 ADNAANEJId ¥90Na0dd

Y901 NOLLYVHEV12dd
ADNAANAdHA ¥90Nd0dd

V01 JOHLIN

V701 NOLLINIA3d SSVTID

US 9,201,766 B2

Sheet 3 of 63

Dec. 1, 2015

U.S. Patent

~—

m 4901 NOILVYVTIOAA |} "~eeee__
| ADNOONAdAa ¥EONA0d || e
A | 1N
m A01 QOHLAN +}_ e, DI EWNOM
Frremsrreoossenoooeensoo SRS | D801 |
D701 NOLLINIAAA SSYTD | Bl g
m 3901 NOLLVIVIOAA || N H]
| AONIANZJAA ¥IONA0Nd ! S Lo} e
e el AC TV 4T
Y01 QOHLAN | R Y [

m @901 NOILY¥V1JEd |
m>uzm52mﬁ_moxmoaoo%f

2901 NOILVIVIOHd
AINAANAdAA JFONAO0Yd

! 9901 NOLLVYVTIDHd
m\wUZm_QZmEmQMm_UDQOMm

V90T NOLLVAVTOAd
ADNAANAdId ¥4ONdOUd

V#01 AOHLIW

VT01 NOILLINIIHA SSVTD

US 9,201,766 B2

Sheet 4 of 63

Dec. 1, 2015

U.S. Patent

m 4901 NOLLY¥V1O8d
m>uzmozmmmommoaoom

=™

b 4901 NOILY¥VTIAA !

{1 ADNAANAdId ¥30NA0Ud ! |

e s AR >
| 201 oHan kT €

901 NOLLVYVTOHA
AIJINAANTIA Y40Nd0Y

..... ar danodid

D901 NOLLYYV1Ddd
ADNAANIddd ¥3401d0dd

4901 NOILYYVTO4d
ADNAANTd3d 490N0a0dd

V901 NOILVYV1O3d
AJDNAANAdAA ¥I2NAd0dd

V01 AOHIIW

V201 NOLLINI4FQ SSVID

US 9,201,766 B2

Sheet 5 of 63

Dec. 1, 2015

U.S. Patent

41 TINOIA

2901 NOILVYV1Odd
AJNAANHdEd ¥90Nd0¥d

I¥01 AOHLIN

4901 NOLLVIVIDdd
AJNIANALHA Y9DN1A0dd

gr01 JOHLIN

V901 NOLLVYV1D3ad
AONHANAdHEA d92N0d0Odd

V01 AOHLIW

V201 NOLLINIJAd SSVT1D

US 9,201,766 B2

Sheet 6 of 63

Dec. 1, 2015

U.S. Patent

V€ TANDOIA

vt €l 0£€ SYIDNAOU INUNOS 40 LNILNO
"] 41NAOW NOILNDEXH HAV¥D ¥ADNAO¥d
[}
| ¥8€ ONIHOVO
| 10d1N0
| ¥ADNAOYA
m $Z¢ LSTHALNI
m 08¢ TANLONYLS (S)HIVID ¥IONAOUd 10 TV SLLAO ASOHA SHAANGONd
| 2 TAOW YO ANO 40 L3S INTHINO
N 0v€ TTNAOW NOLLVHANAD

HAVED ¥3)NA0¥d QILYNOINY | 0¢€ 8000 E0¥N0S QALNANIO-LOAIE0

S€€ 10ddNS ONINNVIO0Ud NI Somwwﬁ%%@w%ﬁ%mm%m
QALNANO HAVED ¥ADNAONd HLIM SNILNOY
¢ TANDOM
T0TZ SAOALAN

0TC LY40ddNS DNIWAVEDOO0Ed A4 LNII-EO
HdVdD Y40NAd0Ud HLIM HNLLNOYE

Y04 SNOILVEVIDEd ADNAANAdAA YI21d0Ud
HLIM HG0D NOILYII'lddV JA4LNHIIO-LO3{dO

VOIZ SQOHIANW
dOd SNOILVEV1dd ADNAANAdId 4921a0dd
HLIA 30D NOLLVII'TddV I INA-O-LJA[90

US 9,201,766 B2

Sheet 7 of 63

Dec. 1, 2015

06€ ATNAON LNALNO YAINAOYd HARIAAO |
T I
| 1LNdLNO ¥4dNA0Ud ! ! 7] SLNLNO ¥EONAOYd NAAAIYYAAO |
' QOHLAW 3ATLIgAO m “ AL¥4d0Odd I b e
e e mmn e em e ' AARNFIAO ¥
Leccewwememce—eeeoemeememeemana-SIIIIIIIZISIIpIIzzIzzzzIICAN
©96£00T L
____SAR¥IA0
Y , g€ TINOIA
0LE < 7€ 9a00 AXANOS NI LAS SYIINA0Ud
{1 21NAOW NOLLNDIXE HAVED ¥IINA0Ud INAANIIANT 4O SLNdLNO
! pREONIHOVD |I T8EONDRIVN | 0$€ SYFDNAOY ADYNOS 40 LNdLNO
| 1NdLNO | NOlNOAXd |
m ¥AONAOUd)i IVANANHMONI !
| 08 TINIONLS (SHAVHD YHONAOUd 5 c7¢ LSTAALNI
m § A0 TAV S1N4LNO ASOHM SYIINAOUd
m / TIOW ¥O ANO 0 L3S INTHIND
R $9€ ATNAOW NOLLYHENAD
HdVHD ¥90Nd0dd AALYWOLNY (| 0% 3000 0UN0S QILNARIO-LOAIEO
NI SGOHLAN 04 SNOLLVIV'IDAa
09€ 1Y0ddNS ONINNVEO0Ud XANTANAIIA Y9000
AILNATIO HAVAD YIONA0Ud HLIM TNIINMY

U.S. Patent

US 9,201,766 B2

Sheet 8 of 63

Dec. 1, 2015

U.S. Patent

aLIIaon
44 OL ¥30Nd0¥d 40 1Nd1NO SNV

¢ ¥I0NAoud , 2 I0NA0¥d
LSTAALNI

40 LNdLNO INTMIND LAD OL HAVHO NI 1 430Naodd A

SYIONAO0Yd dALIVIAT AINO FLNIIXA-TY

$ ¥4D0NA0dd ¥ 440Nd0¥d

OF JdNDIA

¢ ¥4ddNAdodd ¥ 44ONA0Ud

£ 440Na0dd . _ 2 ¥IINAO¥Ud _ -

’ \ gy TANOL
LSAUAINI 1 490NA0Nd

40 LNdLNO LNTYIND LD OL HAVIED Vi TINO1

NI SYHONA0Ud 40 NOILNDIXH TVILINI
$YIONA0Ud ¥ 43001d0dd

SHEDNA0¥d T8N0
£ ¥I0NA0Ud /SEIINAOU -
INVIS NOILNOAXA

LSHYALNI 40 SI LNdLNO
JSOHM YIO0NA0Ad
QILOFTIS ATINTIAND

A'HINg/AdA00SId
Ol LdWALLY

7 9440Na0dd
1 490na04d / HdVYUD dID0NA0Ud

US 9,201,766 B2

Sheet 9 of 63

Dec. 1, 2015

U.S. Patent

J4IdIdON 94 OL

YAINAO¥d 40 LNdLNO ASNVD § 440NAacyd ¥ qAINAOUd
¢ ¥AONAOUd ALIIAOW A€ OL JI0NA0Nd 2 ¥AONA0Ud
40 LNdLNO ASNYD

1 ¥32Nd04d

JSTYAINI 40 1NdLNO INTIIND LD OL HdVHED
NI SY4001d0¥d d4.LOVAAL A'INO dLNDIXH-3d

§ 440N1a0dd ¥ 4d2Naodd
€ MADNA0Ud Ao dd OL ¥3oNaodd 2 ¥4A2Nd0ud
A0 LNdLNO ISNvVD

\ ar TUNOId
[¥30NA0Ud

LSHYALNI 40 LNdLAO LNTIIND L4D OL HdVYED
NI S499NA0dd d4LOVdAT A'INO HLNO0AXT-dd

US 9,201,766 B2

Sheet 10 of 63

Dec. 1, 2015

U.S. Patent

Av. -
¢ 8L¥ddonaodd VL d40Ndodd

(HIVYID ¥90Nd0¥d O1 Aay Ol (S)4a2naodd
HOIHM) NOILNDAXA TVEOTD ONINNA HAVID
AADONAOUd A0 YFANIVIATE ATING/ITAQDSIA

LSTYALNI 40 LNdLNO INTHIND
T4 OL HdVYID NI S¥90Nd0dd 41NDTXT

€ 4H2NA0Ad

ANV ADNAANIdIA QIATOSTIN HATOSTY

9d40Naodd

g5 JdNODI

- V¢ ANDIA

-

£ 440Naodd

YHANIVINGYE TIATOSTINN 9 YADNAOUd
4

~

~

§ 440Ndoyd ¥ 44ONA0dd
TdIO0NA0Yd

/ HAVID ¥AINAOUd
| YIONAOYd AATOSTW/ATING/ATAODSIA
LSTAALNI 40 SI LNALNO ASOHM - OL LINSLLY

dIONAO0dd A4.LITTAS ATLNILAND

US 9,201,766 B2

Sheet 11 of 63

Dec. 1, 2015

U.S. Patent

8 J40NdoAd

(HdV¥D ¥32NA0¥d OL dav OL (SF2Naodd
HOIHM) NOILNJAXT TVE0TO ONIINA HAV¥ED
YIDNA0Ed JO FHANIVINTY A TINEATA0DSId

(NV AIDNAANAdHA AIATOSTINA HATOSTY

S
~~

~—e

9 930Ndo0dd

LSTYHLINI 4O LNdLNO INTHEND
L4995 OL HdVdEO NI S432N1d0¥d 41N3dXd

8 440Naodd

V. dd40Ndodd

.\ (HdV¥D ¥EONAOU OL AAV OL (S)4ddNa0ud
HOIHM) NOILNDAXA TVEOTO ONIING HAVED
YIDNA0Ud 40 IANIVINEY A TING/ATAODSIA
ANV ADNHANAJIA AIATOSTINN FATOSTA

~.
~~

-

[MIONAO¥d ISTWALNI 40 1NdLNO INTIIND

L49 OL HdVdD NI S4I0Nd0¥d 410IdXH

US 9,201,766 B2

- (SIHAVED ¥40NA0¥d FHL 40 JEANIVIWTY

Sheet 12 of 63

Dec. 1, 2015

U.S. Patent

009
: 9 TUNOIA
099 ONINOVL !
! 0£9 TTNAONW
NO AdSve q4.LNJAXA 38 LSO LVHL SYI0Nd0¥d [&——
ANV 2LNODIXT ANV (S)HIVED ¥IONA0Ud XTVA B NOLLADIXT E/r&c HADNAOU TAOANI
/ A

m $69 NO SANHdId LI HOFdHH.L SY40Nd0dd
mQ2<mmUZ<HmZ~>Z<OZ;<~HZ<FwZ_O7:QDAUZ~

dHL ATING/AIIAODSIA ANV SHIDNIANIJHA
DINVNAQ GHATOSHANN ANV HATOSH

———————T

059 MDVIL ANV S4d2NdOdd
40 1dS HHL 40 SLNd1N0 dHL AJIAONW
ANV ‘AYVSSTDIAN SV ‘SHIDNAO0Ud ALVIINVISNI

$79 SYADNAOUd FTIOW JO NO
i 71 40 18S V 40 (S)LNdLAO ¥A2Nd0dd 4arddA0

———

079 (HATIIIAO
104100 ¥951d0dd

$+9 440D 40dN0S
NI SNOLLVIVTDHA ADNIANTId dHDN1A0Ud
NO @dsvd ‘NO SANAJdId 11 J04¥HHL S¥dDNA0dd

S19 LSHIHINI 40 S¥421d0dd
40 148 Q104 TdS ATLNIIEND dHL

0F9 130ddNS HNININVIOOUd

QAINARIO HAVIO ¥ADNA0Yd HLIM TNLLNAY INATTD FNLLNE 40 MOTd NOLLADEXH TVIIDOT

ANV SHONY.LSNI ANV ONLLYLLNY LSNI ONIAN'TONI " SV LSTMALNI 40 SI LNdLNO ISOHM SuaNa0dd [€
HOVAE 404 HAVEO ¥ADNA0Ud AHL A TINg " S o e e
ANV YIAODSIA OL IINALLY ANV LSTIALNI 40 m
(SNEONAOYd 40 LAS INTHUND THL ALVLINV.LSNI |
019
0

o}
\&

US 9,201,766 B2

Sheet 13 of 63

Dec. 1, 2015

U.S. Patent

$TL ¥9DNA0Ed

[=I LNIFWNOHYY

07 ¥30Na0ud /
§12 000 *044 ‘440 ¥IONA0Yd
01L (N "DV ** ‘1 "DUV) VHJTV QOHLIW

0L ("1 "ddALNANNOAY) INFWALYLS NOLLVIY TO8d AONAANIdAA ¥30NA0Ud

OL JANOId

11 (S)AONAANZJAQ OFS
W T (S)AINAANALAA AT

01L (N"OYV " ‘1 'DYV) VHd'TV AOHLIW
0L (01 "dAAUINTIVILSNODATIVAM 4”1 'ddAqIVMdN
T dIAOAs W 1 dAAdTAL N dHIA oY T T dAAINAINNOYY) INTWALVLS "03d AONAANAdIA ¥IONA0Ud

VL 3dN01d

US 9,201,766 B2

Sheet 14 of 63

Dec. 1, 2015

U.S. Patent

<L ¥90NA0dd

NOLLVNINYALAA 4L TANOH
ADNIANAdAA
22277708 9AONA0U T
.................. ® 07 440Naodd >
\\\\\\\ >
SZL 4dONA0N
NOILYNINYA13d < 8y ¥4ONA0Yd
AONAANAdId
\ DL TANOIA
0L 430NACNd >
T/ $9 4IONAOYd
NOLLVNIWYELIA
«Z217._$8L990NA0Ud T L dIINAOUd AONAANAAA
0z 39)Nd0ud =1 INFINNDOYPV dL TANDIA
09, 7A0D DA ddd ¥Id2NA0Ud
» SSL () V1d9 AOHLINW
0SL (") INFWHLVLS NOILVIVIDAA AONAANAJAA ¥I0Nd0dd
- N 01 (N "DV " ‘1 "D¥Y) VHA'TV AOHLIN
oL ({1 "dHALNINNOYY) INHWHLVLS NOLLVIVTIOFA AONIANAdAA ¥90Nd0¥d

dL TANOI

US 9,201,766 B2

Sheet 15 of 63

Dec. 1, 2015

U.S. Patent

~——
~———
~
~—
ke

IL TANO1

HL 44114

US 9,201,766 B2

Sheet 16 of 63

Dec. 1, 2015

U.S. Patent

lll

9v8 H'1INAOW FIVAIILINI 448N
TVIIHd VD NOLLOVIILNI ANV
ONIJAANTY V ANV ‘v8 A TNAON

JOVAYALNI 48N TVOIHdVID

V :ONIANTONI ‘0¥8 ATNAOW

AV AIALNI YASN TYIIHIVED
| LNOAVTLNdLNO ¥IDONAOUd
| AAILDVIALNI 319 VINDIANOD

ONIddVIAN ANV NOILVINDIANOD

0€8 SN

ANOTV ANVLS

I

ayz8 (AOVIIAINI
JASN TVIIHAVEO dTIINOTT ANY)
D778 SANYIWINOD FLNDAXH TvHOT1D
4778 A0 NOILVYVdTdd V1Vd
V8 (LSTIALNI 40 ($)440Na0dd
ANV SSV'1D) 400D NOLLVILNY.LSNI
ONIANTONI ‘v78 SAOHLAW
NI @3SSTadXd 9a00 INAITD
AANTONI LVHL SNOILINIAAQ SSV'ID

€8 SOHA ADNAANAdHd

Y40NA0dd HLIM SAOHLIN

NI QASSHAIXH DID0T SSANISNE FHL
HANTONI LVHL SNOILLINIAAd SSVI1D

028 40D d2dNOS d4LNAT-O-1LD4rd0

V8 TdNOId

<

018
Jd0ddNS ONININVED0Ud
I LNATIO HdVdD
d40Nd0dd HLIM HINLLNNE

US 9,201,766 B2

Sheet 17 of 63

Dec. 1, 2015

U.S. Patent

L1NdLN0 YI0NA0¥d FJAILDVIILNI AT VINDIINOD OIEINID

$88 ADVIUALNI LNAI'TO LONOAVT

v

¥€8 4S8N
INAITO

¢e8 dsN
LERYEN

A

ares (A0VAILLINI
WASN TYIIHIVIED ATIINOTY ANY)
78 SANVIWNOD ALNJFXd TvEOTD
g+78 900D NOILYIVITId VLVA
vZ8 (LSTAALNI 0 ($)II0NA0ud
ANV SSV1D) 400D NOLLVIINV.LSNI
DNIANTONI ‘28 SGOHLIW
NI @ASSTIIXA 40D INAITO

A

JANTONI LYHL SNOLLINIAAA SSYT1D

€78 SOdd ADNIANAdHd

¥40NA0Ud HLIM SAOHLINW

NI ISSHEdXH DIDOT SSANISNY dHL
HANTONI LVHL SNOLLINIAAA SSVIO

078 400D d2dN0S AILNANO-1Od(d0

48 ANOI

ol

018
Ld0ddNS ONIWAVIOOYUd
J3.LNATIO HdVID
J40Nd0Ud HLIM HIWLLNIY

9¥8 HTNAONW HOVIHALINI ¥4S] TVIIHIVID
NOILOVYALNI ANV ONTIIANTY V ANV ‘v¥8 1Nd0NW
HOVLIALINI ¥dSN TVIIHdVID DNIddVIN ANV NOILVINDIANOD
V ONIANTONI ‘0¥8 ATNAOW AIVAIILNI 2SN TYOIHIVID
LOOAVT 1NdLNO Y90NA0¥Ud AILIVIHLNI 41V ANDIINOD

US 9,201,766 B2

Sheet 18 of 63

Dec. 1, 2015

U.S. Patent

I8 TINOIA

4d0Dd1Z

41VLS

ALD
SSAAAV

\ 40V
HINMIFI0ALYA

a7

\

SSTAAAv
4«7 HLIId TVNOISSAA0Ud
40 41vd
SSTIAAVANOH
<l | TAVNLSYT
= WAANAD

AR Mg | TTT—— awvNIsvT
SSTNOILOATIS _] T VNS
LERIES YTNOLSID [NOS¥ad
. _ 758 SAOHLAN
158 AMAIA DNIdVIN ANV NOILLVINOIINOD AL¥IdOdd 19D
WIAHI HLIM SASSVID
058 AVE NI /
j
958 SONIddYIN

US 9,201,766 B2

Sheet 19 of 63

Dec. 1, 2015

as NoLd

3000d1Z

HILVIS

ALDD
SSTIAQY

40V

HLAIg404d1vd

S
91 a0v SSTHAd
[, HIdg VIVNOISSZA0Ud
o
| 0661/07/L | 40 ALVd
SSTIAAVINOH
HLINS / ANYN 1SV'T

i IANID

\ \ NHOI) /m2<z 1S9 TNVNISYT

S8 NOLLDT T3S TNVNLSHIA
HONV.LSNI MANOLSND NOS¥Ad

758 SUOBLAN
p$8 YAMAIA ONIdAVIN ANV NOLLVNOLINOD AL¥dO¥d 19D
MIAHL HLIA SASSY'ID
\ 058 MY NN

U.S. Patent

! 098 d.LVINDTVOdY THM 4DV ANV dLODIXT 858 NOILOITHS HONVLSNI
ANV L3S V NI LTNSTH TTiM NIHL ‘HIEI4 40 9LVd FATTITAO I NO dasvd qdLv1NdOd

US 9,201,766 B2

Sheet 20 of 63

Dec. 1, 2015

U.S. Patent

H8 HANDIA

4d00dIZ

EARARS
AL

SSHYdayv

4Dv
HLYIg40d1vd

SSTIAd
VI1VNOISSH40dd

\

SSHIAAVAWOH

g &

M_fx\ HLYIg 40 41vd JAVN LSV

HWVYN LSHI4

YIANTD
T GVYNISVT

T ANVNLSIIA

/ LSI'TYHNOLSND

NOSY¥4d

}m—?m; DNIddVIN ANV NOILVINDIINOD

768 SAOHLIN
Al¥dd0odd 13D
HIFHL HLIM SHSSVIO

/ 068 dvd NI

[

T
¥98 NOILDH TS NOLLV.LNAIO ANV ANOZ

998 SONIdAVIA

US 9,201,766 B2

Sheet 21 of 63

Dec. 1, 2015

U.S. Patent

48 INOI

4A00dIZ

JLVILS

ALD

SSTAAAY
IOV
HINI9404LVa
; ssTIaa

1z $861/07/L HLINS NHOT VIVNOISSTA0ud

91| _—» 0661/07/L SAVAY | WAJINNAS SSTYAAVANOH

91 0661/0T/L SNITTOD qAdL / YHANED

TNVNLSY

\ 40V | HL¥Ig 40 9LVd ANVYN LSV | TAVN 1SHId \ TNVNLSHL

LSI'TYANOLSND \ NOS¥3d
758 SQOHIAN
$$8 YAMAIA ONIddVIA ANV NOLLVMNDLINOD AL¥AIONd 1D
MIFHL HIIM SASSVID
\ 058 MV NNAN x
| _
0.8 ALVINOTYITY TTIM DV ANV ALNDAXT 898 NOS¥Hd SSV1D

ANV 198 V NI LTNSHE TTIM NJHL ‘HLd19 40 31L.¥d AREIAO A1

40 SHONVISNI NO a95vd dd41v1Nd0od

US 9,201,766 B2

Sheet 22 of 63

Dec. 1, 2015

U.S. Patent

46 24NHD14

Q6 TANDIS

$¥6 LI0ddNS ONTNIWVIDOAd

J4INI™EO HAVAD ¥90Nd0dd HLIM

SY TTdM SV ‘NOLLOZdSOdLNI AOHLAW/SSVTD
NV ‘NOLLYDOANI AOHLAW ATONIS DINVNAQ
‘NOILVLLNV.ISNI SSVTID JINVNAQ ‘ONIAVOT
SSV'ID HLIM JWILNNY WHLSAS DNILLVIHdO

0¥6 SGOHLANW
YOd SNOILVIVTOAA ADNIANTIIA YHONAOUYd
HLIM 0D 04N0S d4LNAR™O LDArdo

V6 JdNOId

$¢6 WA.LSAS DNILVYIdO

026 WHLSAS ONILVYddO

0€6 L40ddNS ONIWAVID0Yd AALNANIO HIVID
YAINAOY HLIM SV 11dM SV * NOLLDHdSOULNI
JOHLAW/SSYTD ANV ‘NOLLYDOANI AOHLANW
TTONIS DINVNAQ ‘NOILVILNVLISNI SSVID
JINVNAQ ‘ONIAVOT SSVIO HLIM AWLINNY

S16 NOLLOAdSOY.LNI

AOHLANW/SSYT) ANV ‘NOLLYOOANI AOHLAW
ATONIS OINVNAA ‘NOILVILNY.LSNI SSVT1D
DINVNAQ ‘ONIAVOT SSVTIO HLIM FNIINNY

$76 SAOHLANW
04 SNOILVEVIOAd ADNIAANAdHA YI0Nd0Ud
HLIM 3002 35¥N0S d4LNAO LO3rd0

016 LIOddi1S ONINAVEDOEd
THINATO HAdVED ¥30Nd0dd HLIM FWILLNNA

S06 SAOHLIN
YO SNOLLVIVIDEA ADNAANIIHA ¥4231d0dd
HLIM 5O 40¥N0S HLNATHO LOFdO

US 9,201,766 B2

Sheet 23 of 63

Dec. 1, 2015

U.S. Patent

||

N

A

0v01 ' 1NAONW

11 it < $€01 SONVININOD JLNDIXH TVE0TD
0,01 IINAON NOILNOAXA HAVYD Y4ONA0Ud L W1 wo.q:-:,_
, L. danpEag |
y w |
(") owownwe 1) aron |
" |1 SYOIITNAONW i)
ONIHOVO LNdLNO | | NOWNOAXd || | |ngino | 00T SONVININOD HARMMEAONN/AQRIYIAO
/ Y42NA0YUd L OTVINGWEEONI | *1 yoynaowa 1Nd 1O ¥IONAOYd
S ‘10 zanmyaac | ONIANTONI NOILVYVdTdd V.LVd
0901 TUNLOMULS (SHIVED FANA0Hd Y P oS ey

STOT SAHY ¥4DNAUOCUd

NOLLVHHUNID HdVYED ¥I0NA0¥d JA1VINOLNY <

]

S901 TANLONYLS J

DNIAOVYL
HONV.LSNI

901 H'INAOW dIMEIA
Hd VD d30Nao0dd

HLIM SAAD NOLLVILNV.LSNI ¥3DNaodd

i;________‘_____ -

8601 i
TINAOW a 0201 SAEM FINVLSNI HLIM
HONVISNI 7| SANVIIWOD NOLLYLINY.LSNI SONVISNI
MAN :
ol SO S
9501 SOAA AONIANHAdAA || |I $601 o101 50ad SmezEmew%%_Mowm
YADNAOII ANV || J; GTINAOW 1| ;-mmmoooocoeomooee 2101 VIVa
.............. : M1 0601 SAT SSVID !
(SOUSLW] SAOHLEW JI S SRR 0101 J1DOTT SSANISNEA
$S01 SASSVTH _r-----.% nm HHL HANTONI LVHL SNOLLINIA3d SSVT1D

- v001 HMOnEDm

lll

DNIWWVED0Ud AALNATYO HAVID YIINAOAd HLIM FNILNNYA

0001 CO0T LNHITD HWLINNY

US 9,201,766 B2

Sheet 24 of 63

Dec. 1, 2015

U.S. Patent

ai NI
8611 L611 6611 7611
SNOILV.LONNV SSV1D | QANIVHISNOD €611 | s611 9611 | v611 | AONTIHITY 0611 ATM
"TVNOLLIQQVY | 1Nd1No ATIVIM | Qivmdn | 0dS | @1did | 'Dav JOH1IW QOHIAW
D11 TANOId
AONTILITY
AOLVOIANI AI2Ndodd
AMDILS V NO
ANV IO JINTT | [EVNIWIALId
VYV IONTITITY | AONAANAdHd
WIONAOYd VANV
NOLLVNIWYALAA HONHEIITY
oLl ADNAANALIA J4ONAodd
SNOILVOIQNI | V “(S)IONTIIITd INJdVd
LNd1No IONA0Ud VANIT
YAINA0Ud | ATHD ANITHOVE HOVH 404
JarddA0 | 04 ONIANTONI ONIANTONI
0811 ONDIMVIN | % DNIHDVD ‘0911 (S)yNIT | 0ST(S)INIT SH11 P11 Sglt
NOILNOIXd 1Nd1No (SNEDNA0Ud | (SNFINAOU | FONTATITY | FIONFIAIY | FONTIAATA
TV INIINTIONI ¥FAINAOUd ATHD INTAVd QOHLIAW | TONVISNI SSVID
d11 TANOML V11 $NO1d
STI1 FONTYIITY 0zZ11 0111
ADNV.LSNI AT AONVLSNI SITT HONTYAITA SSYVTID | ATI SSVTD

US 9,201,766 B2

Sheet 25 of 63

Dec. 1, 2015

U.S. Patent

T 0v0l FINAOW NOLLVIANED
Hd VYD Y320A0¥d ALVINOLNY

T o T : 71 TNOIA
il FINAOWNOILADIOSENS &~ _ ;
st ncon i |
| AONFANAdEADINYNAQ L T m
0£01 FTNAOW NOLLNDAXA HAVYD YFADINAOUd
x 000000000 \ S
4 e Y
0901 TANIOMMIS || 0s¢l
d (Sndvan wadnaoud || 201'E0S |
~ ——— ¢
| 0€TIAINAOW {i OVIIAINAON |
! ADNADNIINOD ! NOILdNOSENS |

A

/ L 8601 moo_e
(VIVA) |4 j GINGOW : |

E— saonvisnt | ¢ TNYND . |
901 TANLINYLS x o o | $121 SYAONAOUd !
ONIMOVYL = " " TN m
AINVISNI jommmm————— . Ezzzzazezzozzzozzzaazoazec!
9601 SO40 AONIANAJIa poS60T) i 0ZZ1 NOLLADIDSENS !
¥IAINA0Ud P INAOW & Frsssssassasasisisany

v MAN 9101 $2Ad AONAANAIAA HHINGEOUL

yS01 SHSSVTID b ! m $101 SAOHIAN

! 101 VIVd

001 0101 JIDOT SSANISNE

1¥0ddNS ONINAVIDOUd AIINATIO HAVED 4a5Nd0dd HLIM HWILNIY

0001

AHL 4ANTONI LVHL SNOILINIAFA SSV IO

US 9,201,766 B2

Sheet 26 of 63

Dec. 1, 2015

U.S. Patent

g¢1 INOId

08¢l
861 SYAONAoYd d99NA0¥d NOILVNINIHLAA

@IVANVYIS AONHANALHIA Vel 449ND1

£1 ¥490Ndodd

VI1A9:AL:MD
AAINAOUd ddd NANLTA
€1 442NA0¥d=A0ud ddd
LOTAIA=AdAL dAd
02€1 40D "DAA "ddd YAINAOUd
S1€1 (d9a 40 AONVLSNI NV SI LNdLNO) V.ILId AOHLAN

01¢€I () "LVLS "04d "dad 492Na0dd

VHdTV:0::0D
YI0NAoUd

¢0¢1 VHdTV AOHLIN
00€1 (" 'VIAE: AL MO YAONAOAd" ") "LVLS "04d "ddd YI0NA0Ud

0

US 9,201,766 B2

Sheet 27 of 63

Dec. 1, 2015

U.S. Patent

08€1 Ot HANOLd X NANLTY
AIDNA0Yd NOLLYNINYALAA OFEl VIWAYD AOHIAN
ADNIANIdId 8¢€1 () "LVIS 'D4Ad dAd 43DNA0Yd

act 24N

ddd NINLAY "1LOFAIA=AdAL dAA
‘VAINVYD:ZIX0=00¥d dad
$8€1 S¥4DNA0Yd 9EL1 HA0D "I4a "ddd ¥423Na0dd

QIVANV.LS a e PR p£€1(d3A LNA1NO) VLTAA COHLAN
e 9 z€€1 ()°LVLS 230 'd3d IINA0d
e O
€. ¥30Nd0ud e

4ondoud V.LAE AL MO _ " o
e/ MIINAOUd dO¥d ddd NINLAY ‘LOTAIA=Ad AL dAd
4. JI2NA0Yd=U0¥d d9d ASIMYTHLO
° VL EAONA0Yd=A0¥dd d9d NIHL 1= OVINAVO:ZEXD I

VINWVD:-Z1:XD
d40Nd0odd

YLTIA=AT=ND
Y40Na0Ad

v

06€1 V138 QOHLANW e 0£€1 9000 0dd ‘dgd YHONAOYd
IANIVINEY S1€1(d9Q 40 FONVISNI NV SI LNd1NO) V1A8 AOHLIW
agATOSTANN e szel (VITAG:ARND ¥HONA0¥) LVLS 'Idd ‘dad ¥aNA0Nd

4‘fll AHHHV
e
Ilrl
~

~e
o
~

§ ¥9001d0dd

$0¢1 VHA'TY AOHLIW
00€1 (V1A= AT MD ¥IONA0Ud ") "LV.LS “04d 'd3d YAINAOUd

©

S8¢1 SYIDNAOUd
QUVANVYLS

US 9,201,766 B2

Sheet 28 of 63

Dec. 1, 2015

U.S. Patent

€1 TANOIA

§8¢1 SYIO0NAOAd
TIVANYLS

-

-
e
—

06¢1 V1449 AOHLIN
- YHANIVINTA
JIATOSTINN

-

.
-

§8¢1 SYIDNAO0Ud
MAVANVLS

Y40Naodd

¢ ¥d4dnaodd

~

VNNVD-ZI=XD

08¢l
J40Nd0¥Yd NOILVNINIA LA
ADNIANAd3d

ATd-ATMD
dIDNA0Ud

VLdg- AL MO
J40Naodd

JET TINOIA X NUNLTY

0P€T VINIWVD AOHLANW
8¢€1 () "LVLS "03d "d9d ¥90ndodd

dad NINLTY ‘LOTHIA=AdAL dAd
YWNYD:Z1:X0=a0¥d dAd
9¢€1 40D "04d "ddd YIDNA0Ad

pPe1 (d4a LNdLNO) ATd QOHIANW
7€€1 () "LVLIS "Ddd "d9d ¥Ao2Naoud

4. 432Nd0¥d=a0¥d d9d HSIMYTHLO
° VL 4IDNA0Yd=A0¥d dAd NFHL 1= OVININVO:ZIXD A1

STE1 (A 4O HONV.LSNI NV SI LNd1N0) V199 QOHIIW
el (YWINVDHZIEXO ¥30NA0¥d LNDIMOHS) '1VLS '04d 'dad "dOyd

00€1 (" *VIAg-AIMD YEONAONd ™) LV.LS D3 'ddd YIINAOUd

O

d4a NINLTY " LOTII=AdAL d3d

0¢€1 3d0D "OHd "ddd YddNAodd

®

S0¢T VHdTV QOHIIN

®

US 9,201,766 B2

Sheet 29 of 63

Dec. 1, 2015

U.S. Patent

DET TANDIA
08¢€1 10 NMNLTE

HET DANDIA IINAOYd NOLLVNINYA.LAA
ADNHANAdIA

0LE1 10190 AOHIAN
$9¢1 () "1LVIS '0dd "d9d ¥3DNA0Yd

1D139::01-0D
Y40NdoAd

TATL01:0D - — -
AONA0Yd 1A NMNLTY .Gpm._o..ow.oouooﬁ dada
"LOTIIA=AdAL dAA 1DLED THOANI
¥9€1 400D D44 'ddd YAINA0Yd
79¢1 (d9d LNdLNO) TATd QOHLAN

7e€1 () "LVIS "0dd 'ddd ¥42Na0dd
AWILNNY FHL A9 oEﬁmoA @

S8E1 SYIONAOId
JIdVANVIS

TS TIRAD
d42Naodd

1AT45010D
_ YAINACUd
L 490 NuNL2Y
N A 11 10=00¥d dda
LOTAIA=TdAL dAQ ‘1DLED THOANI

09€1 3A0D DAd d9d YIINA0Yd
sse1 (dad 40 FONVISNI NV SI.LNdLAO) [ATL AOHLAW
0s€1 (1D1FD01::00 YAONAOUd LNOIMOHS) "LVLS ‘DHd 'd3d ¥HINA0Yd

)

-

06¢1 1ATd AOHLANW
- dHANIVINT A
JIATOSTINN

§8€1 SYHDNA0Ud Y400Nd0Ud

@IVANVLS
0¢€1 VHdTV dOHLIN

T TTHTOIED<d> ¥90Nd0¥d LNOLIOHS) "LY.LS 290 'ddd ¥a0Nd0ud

®

SZARt

US 9,201,766 B2

Sheet 30 of 63

Dec. 1, 2015

U.S. Patent

[€1 TANDIA _ 11 TANOIA
08€1
$8¢1 SYIONAOUd ygynaOd NOILYNIANALAA
JAVANVLS ADNAANIAd

01 ¥43N1Aa0dd

e AWLINNYG AHL A9 ALV
ATLH0L:0D /
IAINAOUd

d3d NAINL T “LOTIIA=Ad AL ddA
01 ¥30NA0¥d=a0dd dda
8L€1 4A0D "29A 'ddd ¥IOINA0Ud
9£€1 (dAA 40 ADNV.LSNI NV SI LNd1LNO) AT1d AOHLAW
pLET () "LVLS "Ddd "ddd d40NA0ud

®)

VHJTV=:0I::0D
Y40NA0Ud $0¢1 YHd'TY AOHLIW

TLET (77701 ¥ADNAOY™d LNDIAOHS ") "LV.LS "0dd "dad ¥ADdNa0dd

®

$8¢1 SYADNAOUd
TIVANVLS

US 9,201,766 B2

Sheet 31 of 63

Dec. 1, 2015

U.S. Patent

SLp1 ¥ADNAO0Ad

@ YIINA0Yd YIDOIAL

0Lp1 ¥IDNA0HUd dl LNIWNDYV
NOILIIDSENS

AMDILS 08v1

ADNHANAdAA NOLLITEDSENS

o1 2ANDI
ADILS HLIM ¥3001a0¥d
Sovl 4AONA0Ed
NOILLdI¥OSENS
NO9¥1 JAINAOUL - V09%1 4A2NA0dd ONITIOSEV
wmeDQOmM%
a1 INFNNDAY
N"V9 ‘ 9
05¥1 ADNAANAIAd
NOILARIDSENS
ONTIOSEY a1 TANOId
HLIM ¥30Naodd
Vi1 TANOILT
oLvl
LYl oLkl woud
WO¥d| WOUA| 08¥1 4O
08¥1 dO| 08¥I dO| Faow
0Lp1 08¢l |QOHIAW| SSVID| JINIT VIN VIN| 0Lyl WOMA AMDILS 0Ly
0S¥l 4O
JAONW
SSl V/IN VIN VIN| DINI'T| ONY¥O S3A N'V09pL| SS¥T NO¥A | DNISIOSAY 0sp1
01¥1
1TP! S3IONA0Ud
AONITITY Y472 SIvI JIOONIL
YAONAOU LEPI sepl ocrl| AAOW ozl | (ONIFIOSaY) 04 00b1 ATN
‘13a| IONVISNI|aoHLaW| ssvd| N | ONguosay)| swaonaowd| vRMALND SOPI| WAONAOU
AONTANZAA| INFYVA| INTUVd| INTUVL | INTIVA| QELFTdNOD| ONIHOLVI 'gNS| ddAL 4NS|S.HAGrAISANs

US 9,201,766 B2

Sheet 32 of 63

Dec. 1, 2015

U.S. Patent

< wevidad

96¥1 AONHANIdId

AHONAOUd NOILVNIWYA LA ADNHANAdHd

4

<__36v1 ¥40NA0Ud

0471 ¥90NA0dd
NOILATIOSHNS
ADLLS

SLy1 ¥4DNA0dd

............................... ATONAOUd YADONIL
08%1
NOILLARIDSENS AMDILS HONOYHL A4LVAID avl TINOIA
AIADNA0Ud NOLLVNINIALAA AONAANAdAd ="~
/ A=l DAV

v
< ¢8v1 490NA0Ad

98v1 ¥40NA0Ud

A9YV104d ATQIVMAN HONOYHL AALVIYD) e dr1 2d4NO1d

US 9,201,766 B2

Sheet 33 of 63

Dec. 1, 2015

U.S. Patent

0851 —

0LST
IANOd

ST HYNOIA

0951 AT HONVLSNI HLIM FYOLS ANV SSVTO 40 HONVLSNI JLVILNV.LSNI

0SST AT SSVTO HLIM NOILDFdSOYLINI TJOLS ANV ‘SINFWILV.LS NOLLYYVIOAd
ADNIANTdA ¥IONA0Ad ANV DNIANTINI ‘NOILINIIAA SSY10 LOddSOYLNI

0P€1 SSVID AvOl

0€ST1 (AIAVOT AAVIATV

SAA JONVLSNI 40 NOILLINIAFd SSVTIO

0TST ¢1SIXd AQVIYTY dONVLSNI

SdA

01T ANVINNOD dONV.LSNI MIN OL HAISNOISHY

US 9,201,766 B2

Sheet 34 of 63

Dec. 1, 2015

U.S. Patent

§S91 DOTLYVLS NOILLNDIXH HHL O1 ¥40Nd0¥d HHL Adv
‘a.LNIIXd NIIg AVH ANV LSIXA SYADNAOUd LNHANAJEd TTV A1

0991 ¥42NAO0CAd 40 SNLVIS
NOLLNDAXT NINLAY

A
) 0591 HOVH MOd ANVINIWOD d4d431A0dd MHAN V IHOANI
ANV SYIINAOYd 40 YIINNN INIWIHLIA ‘MON QANIINYALAA 9 OL
S1 LVHL NOILVIVTOdd AONTANAJHA THL NI ADNAANAdIA HOVE 404

4

§991 DOT IYVILS
NOILNDAXH dHL NI 01

$Y91 INFAATRRAIAO LON

ANV SHIONIANIJIT ANV

ON

_ 0v91 A4.LNDIXANN SV HHONAOCUd IAVIN TJ
A

0891 AA.LADAXENN
SV ¥IDNA0Yd IV

ON

SL91

_ CE91 ADNAANAdHA O1 4NA A4 TIVD I HAVED YTDNAOUd OLNI JINIT _
A

0£91 VIIELID ONHLTIA
NOLLARIDSHNS SSEI0Ud ‘NOLLAIMOSENS ATYILSIOTI HOVA ¥0d

A
_ §791 (S)HIVYD YADINAOEd OL AV
A
0791 NOILINIAAd SSV'ID HHL N1 ¥a2NAOYd JO INFWALY.LS
NOILYAV10dd ADNAANAIHA YIINAOUd ANV AOHLAW SSTIIV

SHAN_ MO0 “9NS AMDILS

Saddv104dd
ATaIVMdAN

A

_ S191 ¥FONAOUA 4O IINV.LSNI 40 NOLLINIZAA SSY'1D SSAODV _
A
_ 0191 FTNAOW FONVLSNI MAN TIVD _
ON A

€091 LLSIXH AAVIATY d40NA0dd

_ 0091 ANYIAINOD ¥F0NA0Ud MAN O1 HAISNOISHI _

$691 NAGQRIYAAO 1ON NHAA¥EEA
SV ¥IDNA0¥d YUVYIN
A
0691 ANVIAINOD
AATRYIAONN
_ IONA0Ed 0491
OL FAISNOJSTY AINAANFdAd
01 3na @11V
41 (S HAVID
¥AONA0Ad
OJINI MNIT
A
STA
91 TANDIA

US 9,201,766 B2

Sheet 35 of 63

Dec. 1, 2015

U.S. Patent

ﬁ $691 OL

)

A

L13dNDIA

0SLT HOVH

404 ANVIANOD ¥d2NAd0dd

MIN YV IH0ANI ANV SY92Nd0dd
40 YHHNNN ININIHLIA

SHA

0€Ll
SADNAANTdId
NOILdIIOS4NS

-NON
ON

OvLl

HLATIWOINI SV 2RAVIN
‘ONIFHOSHY 1 ‘ANY D01
NOILJIIOSdNS OL Adv

ShLl
SHHOLVYIN ANV SSID00dd
ANV J42N00¥d 1TV NVIS

STLT ¥40NA0dd
NOLLYNIWY313d
ADNHANALHA
d4LN24x4d

0ZL1 442N d0Yd NOILYNIWYALAA
ADNAANAdHA FHL 404 ANYIANOD
YIONAOYd MAN V IHOANI

ON

SdA

SILI
SAONIANTdId
LNADNLLNOD

ON

0L1 AADIL 011 INOd

HLIM QEYINIT
AQVIATV
ADNAANdAd SHA

NINNOAY

00,1 (AONAANAJAd YONA0¥d | J4IL) NOLLYHV10dd
AONIANIdId 932NdO0¥d NI AODNIANIdIA HOVAE J04

A

0591 —

SYO1 NOYUA

US 9,201,766 B2

Sheet 36 of 63

Dec. 1, 2015

U.S. Patent

81 HINDIA

$Z81 YADINAO0Ud ﬁ 0€81 ANOA g

ONIHDLVIA GHL OL ADNAANAddd A
NOILILJIIDSHNS DNIFIOSEV dHL
HLIM ¥342NA0dd FHL ANIT ANV

JAO0NAOEd ONIHOLYIN V SV AdV

DNIFdOSgV

0281 ANVIWNOD
d4oNaodd
MIN TAOANI

SI8I ¢ddAL
NOILLAIIOSHNS

SHA

AMDILS
0181 ON

(VIIALI™O
DNIFIL T
NOILdIIOSHNS
LHIN

0081 JHONAOId HOVH ¥O4

A

shL1 ﬁ

0vL1 NO¥A g

US 9,201,766 B2

Sheet 37 of 63

Dec. 1, 2015

U.S. Patent

0£1¢ NHAAIIIAQ SV ¥30100¥dd

[z aunor | YAV ANV (QTI V 41 SONVLISNI NI ANY) HOVD LNdLNO ¥INA0Ud NI LNdLNO LAS

A

0217 ANVINNOD AT0NA0Ud MAN TIOANI

A

0117 ANVIWNOD FATIFAO ¥32Nd0¥Ud OL FJAISNOJSTY

61 2dNOId

mww" % $€91 OL
07 TANOIL !
5761 ¥AONA0Ud
ONIHOLYW 3HL OL ¥A0NA0¥d
00z v DNIFIOSHY JINI'TANY “TLATINOONI
mmo:owmm m%wwwmmw% OO SV NOLLAROSENS ONIFHOSEY VI
“HINAOUd LYWV SV d
INTIVd INTRIND MNIT ammd Odd ONIHD av
INTRND JHL DNIFHOSAY P ——
OL ¥30NA0¥d
¥AONAOUd
110z ¢ LNTAVd MAN TOANI
0 ﬁm %%M_mwﬁwm. AITIVO MNIT
, ANDILS
O NOLLAINOSENS 5161 (AdAL

AMDILS

$00¢

CAINAANEdAdA
oL

dNA AITIVD)

ON SdA

NOILJIOSENs 0161

IA4L: CARL.10)
ONNMALTIA
NOILLJ[¥DSENS
LIINW

0¢£61 ANOA
h

ON

- 0061 NOILd[IOSHNS AHAHLSIOTY HOVH MOml_

A

$€91 ANV 09T ﬁ

0€91 dO 091 WOY¥A

791 WOUA

0£91—/ _

US 9,201,766 B2

Sheet 38 of 63

Dec. 1, 2015

U.S. Patent

VZZ 39N014 Ve
0¥2Z DOTLAVIS
NOLLNDYXH dHL OL d4adVv ATMIN 0722 ALATINODNI
S¥IONAOYd NO dasvd S¥dONaodd SV SYADNA0Yd
d1VAIANVD 40 L3S dHL 01 dav aalnoaxa
A NO ADNAANTdHId
SCTT NOILIRIOSANsS
SNOILAIYDSINS SSHO0Ud ANV D01 DNIHIOSdY
ANV ‘SYI0NJ0dd agadaA0ISIa 04 NV HAVH
SANVINAOD ¥I2Nd0dd MAN AANOANI LVHL SINIY¥Vd
y ANY YV
A

0£7T AIATOSTY S1TZ SYIDNA0Ud
44 OL AdVHd SHIONIANAddd MIVANVLS 39V
IATOSHINN ANV JATOSTYI LVHIL S490Nd0dd
Ol SYd2NdOodd NOLLYNINYE.LAA AQVAY 40
AONAANAdAd 99V LVHL LHS LNHAND dHL
SYIONA0AEd AAVIY 40 1S INTIAND NI ($)490na0¥d
FHL NI (S)4AD2NA0Ud 4.LNJaxd 41n0dax4d

+ A

§TCC SYIDNAOUd NOILVNIAYALAd | 01TT (SAdAL
AONAANAAa TIVdTId |

daa A32N00¥d TIVANVIS

(B —>

§0TT d41N0dXd 39 OL AAVHY T4V LVHL S440NA0¥d ALVAIANYD 40 L3S LNTIND
HHL WOY¥d S¥30NA0™d 40 LESINS V ‘SYIINA0Yd AAVAY 40 LIS INTRIND V SV ‘LOTTAS

A

0027 SYIDNA0Yd LYAIANYD A0 LIS INTIIND dHL SV DOT.LAVLS NOLLNOIXH HHL
NO S¥32Nd0dd FHL NO d3Svd dd.1N2dXd 44 O1 S¥I2NA0dd 4LVAIANYD 40 L3S IDATHS

US 9,201,766 B2

Sheet 39 of 63

Dec. 1, 2015

U.S. Patent

09ZZ SYIONAOYd NOLLITIISHNS DONIFIOSHY FLITdWODNI SSHOOUd

g¢c TANDI

>,
ON
§§TC (A4 LdTdNOD SNOILAIEISHNS 11V

$9TT ANOd

0$CC (ALINE SYTONAOUd dLVAIANYD 40 13

$¥TT SYIDNAOYd AAYIY ANV dLVAIANVD

40 SLAS INTNIND HHL WO¥A SYI0NA0Yd ALNIAXE FAONTY ANV ‘TdLADAXANN SV IV ANV
a4.1N2axd 99 OL SYIINAONd ALVAIANYD 40 1S FHL OL SYFONA0Ud INFIVd ANV AAV ‘AIVSSIIAN
SV ONIHOVD FONVISNI ANY ONIHOVD LNdLNO ¥IINA0Ed ALVAdN ‘ILNIIXT SV SYI0NA0Ud FNIVIN

®

US 9,201,766 B2

Sheet 40 of 63

Dec. 1, 2015

U.S. Patent

012 OL

€C NOIA

$CEC ANOd

A

0T¢T SY9D0NA0¥d AQVHY 10 148
INTHIND FHL OL ¥95NA0¥d HLVAIANYD AILOFTIS ATINTAND FHL AdV

S1£T (dd1NIIXd NO

ON INHANAdIA SH92Na0dd

01€T (H1dTdNOD LON
ddV LVHL ADNAIANddAd

NOILIRIDSHNS
DNIFH0SHV
ANV HLIM ¥4001d0dd

SH

S0ET SYIDNAOUd ALVAIANVD 40 LHS HI NI 432NA0Ud HOVH 404

+

socc — 0022 WO¥A

US 9,201,766 B2

Sheet 41 of 63

Dec. 1, 2015

U.S. Patent

STIANDIA €0TT OL

0£TT OL
¥¢ TANDI

STSTANOA _

0¢vC ANOA

A

0TYT ¥3ONAOUd
NOILVNIWYA.LAA AINAANIdAd
LVHL A9 ILVIID

AQVIATY SANIT ANV AVATO

05T S¥403NA0Ud
HLVAIANYD 40 L3S OL aav

STyt DO SIvt D01
NOILAIIDSENS Loald NOLLJIMOS4NS
WOYd HAOWHY WOYd HAOWTA

A

SISTH1LATdNOD
SV NOLLAIIDSHNS ONIHIOSHY AVIN

0162 ¢ddLNDIX
NHH34
SYIONAodd
DONIHOLVI TV

S0sC

JLATdANOONI ST LVHL ADNAANAddd
NOILATOSHNS ONIFIOSdV

NV HLIM d3DNAd0¥d HOVH 401

A

NOLLVNIWYA13d
ADNAANAJAd
A HLVYINAD
AONHANAAA
SNOIAZYd
ANV JO ddAL

SOPT ¥3IDNAO0Yd NOLLVNIWNIHLIA
ADNHANEd3d HOVE 904

%

09zt J $STC NOAA

mmmN\ 012¢ WOYdd _

US 9,201,766 B2

Sheet 42 of 63

Dec. 1, 2015

U.S. Patent

QaLOVINI 9z TINOIL
AlLogdiaNt¥0
ATLOFAIA ST YIDNA0Nd. et T e

~

dTIHD V A1 ALVOI'TdNd o0 N% o 7197
AAONA0Yd TION)
INFUVd ¥O 0¥dZ 40 138 mww_%%mmwwm
V SYH 011 440Na0dd Pl
AT ALVOITdNA SAVATY |

dONVISNI IVHL

HIIM dELVIDOSSV AOHLINW
V ANV ‘SSVTD LVHL 40
HONV.LSNI NV ‘SSVID V LSVl
LV SAHIINAAL ¥425301d0dd

V TIIHM ‘SY90Nd0dd

FIOW J0 OYdZ 40 14S

P11 S9dDONAdOdd i «— |
TIOW A0

OYd4dZ 40 135
{

\

-

DN
O AdOD

~
~

801 (VLVQ
AONV.ISNI

= VY 40 S1Nd1LN0 NO SANAddd
ddD0NA0dd NJAID V 10
1Nd1N0 dHL IVHL HNIINOY
1V SHIALINAAI NOLLVYVID3d
AINAANHIA ¥4001d0dd
AHL TIIHM ‘GOHLANW NIAID
HHL ¥04 901 NOILVIVIDHd
ADNHANAHA ¥931d0dd

01 AOHLAW NHAID V

201 NOILVHVIDHA SSV'ID

001 HQOD 4DANOS AL INITIO-1LOH[dO

US 9,201,766 B2

Sheet 43 of 63

Dec. 1, 2015

U.S. Patent

VLT N0

94"

| 9TNAOW NOLLNDAXE HAVED ¥AdNA0dd [

:

b3€ DNIHOVO
| 1NdLNO
m ¥AONA0Yd

08¢ TAINIONALS (SHIVIED JAONAOU
_A

0 HT1AON NOILVIANID
HdVYED ¥I0NA0Ed AHLVINOLNV

LEE ATNAOW OTIVNADS MAN !

§¢t LI0ddNS ONINNVIDOEd
J4LINARIO HdVYED ¥dDNA0Ud HLIM FANLINMY

4

0£€ SYIDNAO0Yd 3IYNOS 40 1Nd1LNO

$C¢ LSHYHLINI 4O IV SLNdLNO
HSOHM S¥40NA0dd A4SSTALS
TIOW IO INO J0 LIS INHIIND

87¢ NOILVINYOINI
_ NOILVILNV.LSNI OTdVNHDS

|||

0C€ 40D I3UNOS AALNATIO-1LOdrd0
NI SAOHLAW d0d SNOLLVEVTOHad
AONAANHdId ¥42Nd0dd

US 9,201,766 B2

Sheet 44 of 63

Dec. 1, 2015

U.S. Patent

UIPPLLISAO U33q 9ABY
sindino asoym sieonpoid juapuadap Jo/pue

P B 6ETTINAON |
P p6eINAON || i
{1 1ndLNO ¥AINAOUd || Smﬂﬁw%m.wo% 1
;| QOHLIWHARRAAC 1t gappyaao !
".||||||||||||||||| [N fobofofefofofeofiopofed PutetetieiefafepniataieialL

7966001 L

| ganmaao |

......... BAAO

0LE

b s1oonpoad juspuadopui jo sindyno — e |
+ S1NLNO YHONA0Yd NIAAIIHIAO |

(032 ‘sonfea
Jneyap ‘syuejsuod) ydersS 1eonpoid yusnnd oy
Jo sapou pua ayj aIe jey) pue sarsuspuadap

PREONIHOVD || 288 DNDIIVI
1nd1no fi Nownoaxa

JHINAO0Ed TVINIWIEINI

08¢ TANLONALS (S)HIVID YHINA0Ed

- /
)

$9¢ ITNAON NOLLYHANED
HdV¥D ¥30NA0UYd d4LVINOLNY

gy g g g g

————ea

LEE ATNAON OTAVNIIS MHN

09€ 190ddNS ONININVIDO0OUd
JdINARO HAdVID ¥431A0dd HLIM HWILNNY

Aue 9AeY Jou op ey} s190npoid)

T6€ 40D IDANOS NI LIS S¥IDNA0dd
INAANAJIANI 40 SINd1NO

05¢ SYIONAOYd AINOS 40 LNdLNO

$TE€ LSHYHINI 40 3V S1N41N0O
HSOHM S¥IDNA0dd AISSTALS
HIOW O ANO 40 L3S INHJIND

m 87¢ NOLLVWYOAINI
_ NOLLVILNVISNI OTdVNADS

|||

0z¢ 40D 92dN0S A4ININO-LOA40
NI SAQOHLAW Y04 SNOILVIVIDAd
ADNAANIdHd Y9DNa0dd

4.7 TANO1A

US 9,201,766 B2

Sheet 45 of 63

Dec. 1, 2015

U.S. Patent

‘(uoneondde

JewiBuio ayy “2°1) | oueusss SuiGueyo Jnoyyim (uonesrdde pauoo
Ay “a°1) 7 OLIBUSDS UL SPBL 9q ULD UOHEDIIPOW JOYLINY “Yons Sy
pardos £|jenuasss st uoneoijdde oy °z oLreu3ds J0J (pouo[d 10 patdod
se 0] paLaJal os[e) paonpoidax s1 ydeid 1aonpoid ainud ay) 20uIg

('X-5X)('Z = “Z) = 1 1eanpoId Jo dATEALIR(
Se _vou:QEoo 9q ued 7 OLIEU3IS O] | OLIBUIIS WO [I291npoid
JO 9ANBALISP QY} 7 OLIBUDS 29 | OLIEUADS WOJJ s)nsal Suisn

"Iz s1 190npoid passans ay) Jo indino ayy
Jelf) PAUILLIAP ST 1 ‘7 oureuaos ut ydei§ saonpoid sy Sunnoaxa Ag

pasn jou — aampdrg Sunjoel] yred porordu]

(g8z 23] u1 g 19onpoid “3-2) 1eonpoid
uoneiauad 1oonpoid passans & Aq ndno aq Aew -
10 $("039 ‘9po9 JuBID ‘[N D) BIA) Josn wol) oq Aew -
{ZS = o1euads ‘1 19oNpaId = 1531 JO 199NPoId}
= Joonpolg passang

Tx = ¢ J9onpo1d Jo mdinQ) {7, = Koy 120npo1d-
:(s)3aonpoig payoedwy Apoan(3o 1817

7S = Aoy oureuddg jadle],

[INN = &9 OLIBURDS IDUQIYIY

:UOTIUGA(] ¢ 0Weuads

I7 = | 12onpoid jo Inding
ly = (190npoid Jo ndinQ
‘OLIBUAOS J[NBJSP SE 0] PALIGJAI OS[Y

HBGIER

V8T HANDI

LYAINA0Ad
o'¢
¥ 49INA0Ud

9 ¥30NA0Ud

7 ¥90Na0¥d
1 ¥30Na0¥d
4

7 OlIEUaog

€ 443NA0dd

§ ¥442NA0Ud
£9d90oNdodd
¥ 940NA0¥d

9 440NAa0dd

8 ¥90Na0dd .y {7 ‘1 100npoag}
= .-vu:ﬁo._m vummubm

2¥90Nd0dd
[¥40Nd0¥d
Z

T OITBU30S

£ 44DNA0dd

¢ yFINAOUd

US 9,201,766 B2

Sheet 46 of 63

Dec. 1, 2015

U.S. Patent

98¢ H4NDIA

‘LAS YAONA0Yd adSSAALS NINLTY

(IONAOYd qASSTULS)AAY'LAS YAINAOUd AdSSTALS
‘TORVNEDS = ONIYNADS ¥HONA0Yd AdSSTYLS \\\\\j
1 ¥90NA0Yd;, = LSTIAINIAOATIIIAINAOE IAINAOEd AFSSTILS
{zS ‘1 19onpo1d}
(X ‘.. ¥92NA0¥d,)AAV SYFINA0dd AALIVINT ZOTVNADS

LSy = AT ONIVYNADS 1ADYV.L ZONMVNADS L
}VHATY QOHLANW
() "LVIS '0dd 'd3d ¥a5naodd

ON4VNHDS
LSTIFLINI 40 AT ¥30NA0Ud
SATA1d
dS— SSVID ¥dDNA0Ud qaSSTILS

SYIONAOUd AFSSTALS 40 NOLLOATIOO = IdS
_ _ sqmal
$dS — SSVI0 188 ¥AINA0Ud AASSTULS

US 9,201,766 B2

Sheet 47 of 63

Dec. 1, 2015

U.S. Patent

g 10onpoid “3-2) 1oonpoid uonesuad eonpoad passans e Aq mding) -
10 £(°939 ‘3p02 JUSLPD ‘T1D) BIA) 195N WO -
1aq Kew TA pue IT ‘T

7 9doNnaodd
[442NA0dd
7/

D87 HINODIA

[D] ‘pareand
£ 4320d0¥ud

18 A3y S JOLI0 Yora 01 Paloauu0d ale sieonpold
PaSSa13s MAU Y[} ISNBIAQ)L JOU KEL HOIEO0AUL JO

2ouanbas g1 41 ut s1eonposd pajoedw T[E J0J pUBWIWOD
100npoid passans mau axyoaul 03 SIJ[ysnomp o IIIA
s1zonpoad

¥ d4INA0Ud

payoedwr Apaatipul ale $ °7 1 S120npoid Jey) AJoN
(3] 1§ ‘7 soompoig .

[a] ‘1§ ‘1 100npoig .
[0 ‘18 *p 100npoig . o]
[a] ‘1§ ‘L seonpoig .
— (S1d1) a1monng 3ujoel], yred paroedury ("X-“X)/('1Z — ¥7) = [100mpoid JO SAlRALID(Q !
7 OLIBU3DS Ul i
(Apoanpur 29 Apgoanip yioq) ssoonpoad pajoedun yoel] [IA !
{z§ ‘1 1oonpold} = 1eonpoid passalls Mau B AJUSPL IA (] oureuads /
Iy = mdmQ - “3'1) OLIBUIDS QDUSIJAI aY) Ul (s)1aonpoid Q T OUIBU30S
patoedun-uou ayj 03 Uiy o} Mui| € 31831]~

| = Aay] 190npolg -
:(s)120npoig pajoedwr] A[30a11(] JO 181
78 = Koy oL1euddg 1a81e], L¥32Nd0dd
'X

1S = KoY 0BT 20U2IRJY

‘UonTuga(¢ O1EusIS
:Surmo|[o} 8y JO UOLJELLIOJUT OLIBUADS 9A109Y A
Al

" joLreuass ur ydes3 reonpoad ayi ojur 7 19onpoid ppy
7 120npol{ sI 1521911 Jo Jeonpoad © 1.yl

¥ 440Naodd

! 7 ¥AONA0Y¥d

Suneaipur puewiiod 199npoid mou puodsas B 9A109Y III
‘1 OLIBUADS “9'1 ‘O1IBUIS
J[nejap & ul | Joonpoid Joj ydeid 1eonpoid e 3onnsuo)) T 9 ¥AINAOUd !
___. [¥42NA0¥d
~ 7

" Joonpoiy si 3s9193ut Jo 1eonpord

€ jey) Sunedipul puBwILOD Jaonpoid Mau € A1y
‘pajeoIpul

T

£ d42NA0¥d
[OlTeUaoS

astmIay)o se 1daoxs suonesedo Suimopjo] sy suioted swuny

¢ ¥4d4dNdaoydd

US 9,201,766 B2

Sheet 48 of 63

Dec. 1, 2015

U.S. Patent

(487 23] w g wonpoid <3-8) wonpoid uoneiauad sonpord passans e Aq mding -
10 £("019 “9p00 JUSI[D ‘IN)L) B1A) oSN WO} -
:9q Aew [[]A Pue ‘JA ‘111 ‘1

L d32Naodd

a8z 7dNoI1d

"x-n'z-2) =
| 190NPOLd JO 9ANBALIRQ

¥ 440Ndodd

74

1 490Naodd

‘[H] z oueuass ut £ 190npoIq SUO)D

0] /, J29NPOIJ UO PasoAUl S pueLllwod Jaonpoid passans _
MOU ‘7 OLIRUSDS UI PAUOID SI § 1A0NPOIJ Passans 1YY TIX (3-5)('Z = ©7) = | J29NPOIJ JO SATIRALI(| (s1durexs jusuno
! ay) ur Z 12onpoag “o

olz !

OLIBURDS U PAUO[3 SI p JSONPOIJ PISSONS B ‘ I9ONPOIJ ! ‘uo puadap Apjoamipur 1o
UO Pa3jOAUl SI pUBWIWOD Jaonpold passans mau usypy, TX (1 oueuaos ___ A73021p 10U $30P IS2190U JO
"] OLIRUADS Ul ¢ Jaonpoid 0] 7 OLIRUDS “3°'1) OLIBUSDS 99US19J3 2y Ul (S)13onpoad Wﬁ I2INPOoIJ 3y Jey) AINONNS

Sunyoen yied 1oedun

u [199npoad yui 01 pareass st [] sur] e ‘¢ Jaonpoig pajoedwi-uou 3y} 03 JUI[03 Jui| B 831D [4]

U0 P3YOAUI S PUBLILIOD JaONpoid Passans mau uaym 54
"BSI9A £¥905Ndo0dd
X

901A PUB ‘p 199NPOJ UO puBLIW0d 19onpold passans
MU 2X0AUI U pUE € J2ONPOIJ U0 puBLLLLIO) 13onpoid
Passans mau ayoAul ‘uonereap Aouspuadap e
3y} Ul { 129Npold 210J5q SO ¢ 13anpoid Ji ‘S[duwexs
Iog “Japi10 1eys ul uo spuadap [123npoig ey sizonpoad
U0 puBLIWOD 13onpoad Passalls mau axoAul Aew
‘19p10 uomele|oap Kouspuadep [emut oy uo Suipuadeg X
[v] 7 oueusos ut | 120npoid 9'1 “)saraul
30 190npoad uo puewwod J3onpold passanls mau ANOAU[T[IA
"087 In31] ul st oweg TIA — T
‘pejEdIpUl
astmu1ayo se 1deoxa suonesado Suimorjof ay) sunioyiad swnuny

a1 ug (s)roonpoid unearn
JoU pue | oLIeuads jo yed
01 Suryui 4q paziundo)
T OLBUNS

i Z ¥E0NA0Ud
| ¥90NA0¥d
Z

T OlIEuas3g

'
f
!
1
]
]
[}
I
{
[}
1
!
|
f
I}

¥ ¥440Nd0Ud

99d0Ndo0Ud

£ d92NAodd

US 9,201,766 B2

Sheet 49 of 63

Dec. 1, 2015

U.S. Patent

099 DNIMOVYL

67 41O

0€9 H1NAOW

NO ddsvd d4.102dX4d 34 LSONW LVHI SY9201d0dd
ANY HLNDEXH ANV (S)Hd VYO YHONAOEd ATV M

$$9 NO SANAJAJ 11 JOAYHHL SYgDNaodd
ANV SHONVLSNI ANV DONILVILNY.LSNI ONIANTONI
(SIHAVED YAONA0Ud FHL 40 YJHANIVINTY

HHL ATING/IHA0DSIA ANV SHIONIANIdAd
OIANVNAQ IATOSHINN ANV FATOSTY

NOILNIAXH HdVED d401d0dd HHOAN

A

069 ADVIL ANV S¥HIN1dOdd
40 148 9HL 40 S1.01d100 dHL AJIAON
ANV ‘AVSSHIAN SV "'S4dDNA0Ed ALVIINYLSNI

859 TUNLOAULS ONIFOVEL OIEVNIDS NI JDVdL
ATIVNOILAO ANV OIdVNHDS 4 LVLLNVISNI

§¥9 1dOD HOANOS

NI SNOILVYVIDIA ADNHANTdHd d901d0dAd

NO @asvd ‘NO SANAJId L1 JOTITHL SYIONAOYd
ANV SHONVISNI ANV ONLLVILINV.LSNI
ONIANTONI ‘HOVH Y04 HAVID YHONA0Ud HHL
a1ng ¥4A0DSId OL LAWALLY ANV LSTIAINI 10
(SEDNA0YUd 40 LS INTIIND HHL ALVILNV.LSNI

| 3

L

$79 SYAONA0Ed TIOW YO ANO
J40 14S V 40 (S)LNdLNO YEINA0Ud AATIIHAO

029 (HATIIIAO
LNdILNO ¥ID2NA0dd

S19 LSHIALNI 40 S¥9DN1d0dd
40 1S 31037145 ATINIIIND HHL

\ SV LSHYALNI 40 SI LNdLNO0 HSOHM SHdD1d0dd

AISSHYLS HIOW dO INO 40 LHS V ANINYHLAd

||

|||

919 (OTEVNAIS MHAN ANV

019
LNAITD HALLNOY 40 MO1d NOILNDAXH TYDIDOT

US 9,201,766 B2

Sheet 50 of 63

Dec. 1, 2015

U.S. Patent

0¢ TINOIA

€€01 SANVININOD 4.1.N09XH TvdO1D

0€01 SANVIAWOD ZANEHAON/AAIIEIFAO
1NdLNO ¥4dNdOodd
DNIANTONI NOILVEVd3dd Vivd

6201 SATY OTIVNHOS
NV SATY ¥40Nd0dd HLIM SAND
NOILLVLLNV.LSNI ¥3D201d0¥d d4SSTULS

0201 SATA ONV.LSNI HLIM
SANVININOD NOILVILNV.LSNI dDNV.LSNI

... 0001

$801 TTNAOW IND LNOAYTLNdLNO YAINAOU FAILOVIIINI ‘DIANOD +--+
| 5L019INAON ADNIOANEJIA OIWVNAD | !
0L0€ TTNAOW DIXA HAVYD A0¥d ISSSTYLS TTTh0To0T)

) “,---m@%m%.-)

4 O\ e A)
T v 0 SPOIINAON

LEOTONIHOVD | | OBOIONDIIVI) v jaqing K
104100 ; NOLLOOAXA et ygdngodd ||
¥4ONA0Ud { TVINGWEONL - 3 ¢ gopgwaao

W1 (QHIVID ¥aondoud | e

\ i / 8600

0v0€ FINAOW NOILVHINED Y 211dON 3
HAVO ¥90NA0¥d ASSTULS QILVNOLAY. .~ muﬂmwmé |

7501 (VLVQ

SHONV.LSNI

ONIMOVYIL

HONV.LSNI

| 7901 TINAOW WIMFIA
L HAVED ¥I0NA0Nud

v
v
$901 TANLOMNELS /

6101 SATY ORIVNHOS HLIM
SANVWINOD NOLLVLLNVLSNI ORIVNADS |

950¢ $0dd ADNAANIdId
AIINA0Yd ANV

7001 1¥OddNS

I 900 ¥IONA0¥d NOLLVIENTD
m YHINAOY AASSTYLS |

9101 SO4d d4d ¥32N1d0dd

_ ¥101 SAOHLINW

1 0601 SATX SSVID ; 2101 vivd

....................... '0101 DIDOT SSANISNE
HHL JdTONI LVHL SNOLLINIJAQ SSVI1D

ONINAVIOO0Yd A4LNATIO HdVED 49DNAOUd HLIM HNLLNTI

¢00T LNATTO HATINMY

US 9,201,766 B2

Sheet 51 of 63

Dec. 1, 2015

U.S. Patent

D1¢€ 3ANODIA
YOLVOIANI

AMDILS V ANV TONTIIITY

“‘GQOW JNIT | IFONA0Ud NO

V IONTYLITY | ILVYNINYALAd

ADINAOUd N | AINHANAdEd

OILVNINYELAd vV ANV

ADNAANAJAA V ERLCRELER|

0L11 | “(9)FONTYAITI ¥I0Na0dd

SNOLLVOIANI AIONA0dd INHdVd

1NdLNo A1IHD VANI'T

AAONA0Ud MNITHOVA HOVa ¥0d

HATIIAAO | JOd ONIANTONI DNIANTONI
0811 ONDIVIN 2% ONIHOVD 0911 (SY3INIT 0SIT (S)IINIT SpI1d (iad! SE1T
NOLLNDAXHA LNd1NO | (SFONTILITE | (YIONAOAd | ONTYAITY | AONTYAATH | FONTITITY
TYLNIANTIONI 4A0Naoud dTHD INTIVd JOHLAW | FONVLSNI SSVID

~ DINLONYLS HAVED YADNA0Ud
1€ 2ANOIA V1€ T
Y48
AONTYAITI 0z11 OI11
JONVISNI | AONTITIT" €711 AT STIT ADNTITITI SSVTIO | ATASSVTID
qassILS JONV.LSNI ONIVNADS v/
TINIDNEALSONDIDVIL ADNVISNI AYVIdNAXA TANLONYLS ONDIDVUL SSYID AAVIdINAXI

US 9,201,766 B2

Sheet 52 of 63

Dec. 1, 2015

U.S. Patent

date 74NO14
HANLONYLS ONIIDVYEL OIIVNADS
e
Eie 011¢€ AdX
HANLIONYLS ONDIDVYIL HLVd LDV C1TE dONHYHITYT OIYVNHOS OIdVNHOS

US 9,201,766 B2

Sheet 53 of 63

Dec. 1, 2015

U.S. Patent

‘ORIVNHAOS HHL NIHLIM

dd14154dS LON 4V SL1dLNO HSOHM 108 S1Nd1N0 dAIA104dS FHL A AALOVAAL 34V LYHL SY40Nd0dd
AV SYIDNA0Yd AILOVINT ATLOTIIANI ‘ANVH ¥AHLO FHL NO “gdS1V A€ SV HONS ‘ORIVNEDS LIOYVL dHL
NI d41410d4dS 494 OL ddV SLNdLNO dSOHM SYI0ONAO0Ud AV SYIONAO0Ud AALIVINI ATLOTIIA+

0€1e
8E1€ SSVTIO AOHLAN 9e1¢ JAILVTHY 12913 AT 440Nd0Ud
NV HFNVN AOHLINW dIYHLHANVEVd | C€1€ HONV.ISNI 4LOTOSHY d4.L0vdAl

NOILLYIWHOASNVYIL NOILVINIOASNVYEL 1Nd1N0 [AAILVTIY ATLOTAIA

LSITLOVdAIL

1€ FdNOIA

1€ 4014

0cl1¢

OL dONTII 4T JONTIHITA

¥C1€ LSIT LOVdINL AdX OIVNAIS AT ORVNADS

(4483

LINYVL

HANLONWLS ONIMOVYL SLOFd0 ORIVNAIS

US 9,201,766 B2

Sheet 54 of 63

Dec. 1, 2015

U.S. Patent

L HANDIA

06C¢
ANOd

0£2¢ TANLOMYLS ONDIOVIL ORIYNADS OL (LSIT LOVIAI OL IONTITATI ANV ‘AT
ONIYNADS IONTIAIAY ‘ATN ONVYNADS LADYVL “O°d) NOILVINIOANI ONIVNAIS Aav

02T€ (SLSIXH AVEIITVY ORIVNHOS

SHA

012¢ ANVINIWOD NOILVILNVLSNI OTdVNADS MEAN OL HAISNOdSTYH

NVIOVIA MOTA NOLLVILNVLSNI OIIVNIIS MIAN

US 9,201,766 B2

Sheet 55 of 63

Dec. 1, 2015

U.S. Patent

N 0Ls1
» anoa []
€€ TUNDI
—» 09€€ AT
ORIVNADS ANV AN JONV.LSNI HLIM THOLS ANV SSVTO 40 JONVISNI ALVIINVISNI
m 0551 AT SSVIO HLIM NOLLOFSOULNI T4OLS ANV ‘SINIWALYLS NOIIVIVIDAQ | |
m AONAANAdId ¥90NA0Yd ANY DNIANTONI ‘NOLLINIJAA SSV10 LOFISOUINI | !
08s1 — A m
m 0¥$I SSVIO AVOT | |

0£S1 ¢AdAVOT AQVIATY
dONV.LSNI 40 NOLLINIAHd SSVIO

SHA

061 ¢1SIXH AQVAATV dONV.LSNI

SdA

0151 ANVINWOD HONVLSNI MEN OL HAISNOdSHY

NVEIVIA MOHH HONVISNI MAN

US 9,201,766 B2

Sheet 56 of 63

Dec. 1, 2015

U.S. Patent

0991 J42NA0YUd

§991 DOT
JAVLS NOILNDAXAE
HHL NI D01

J40 SNLVILS
(H) ’ NOILLNDAXH

A

NANLAE

0891 A4LNIAXANN
SV 4d0NdOUd AIVIA

I»

Vit 2ANOIA ‘
O "dNns

MIN JLVI™D

091 (¥IDNAOYd AASSTELS 4LV

[¢AHIVTIO
ATAIVAAN

NAATITAQ

SHA

AMDLLS

<091 SOIAVNADS HTANVH

1091 AIdIEN 41 SHLVd LOVJAIT AALLNAdI

S091 {HAVHED
FIONA0Yd NI SISIXTH AQVAATY AT OIIVNADS
INAVL HLIM d92N004d TISSTAL

0091 ANVINWOD
YI0NAOYd ASSTALS MEAN OL HAISNOdSHY

NVIDVIA MOT4 ¥4IDNA0Ud AASSTALS MAN

NOILVHAYE) ON

v

0L91
ADNIANIdIa
oL

ana aa1ivo
AT (S)HIVID
¥30NA0Ud
OLNI JNI'T

3

SHA

US 9,201,766 B2

Sheet 57 of 63

Dec. 1, 2015

U.S. Patent

qr¢ 34NDId

6291 HdVHD dd0NA0™Ud OL ATA OIIVYNHOS
1A5¥VL FHL HLIM ¥442Nd0dd AINOTO FHL ddV

8791 INV.LSNI
I TTL HHL ONISN Y4DNAd0¥d dHL ANOTO

LT91

HONVLSNI ALdWH FHL TTId OL ATY 490Nd0dd
dHL ANV ATX ORIYNIOS FONTIH13H dHL

HLIM ¥3D20100¥d dHL WOJd NOLLVIWIOANI AdOD

7

9791 ADNVLISNI ALdWH NV
HLVILNV.LSNI OL HT1JOW dONVLSNI MAN TIVD

SE91 ADNHANAJIA

0L 3Nd daT1vO 41 HdVYED ddDN1A0dd OLNI ANI'T

$791 (S)HAVED YIDNA0¥d OL daV

*

A

0£91 VRIALIO ONIYH L T4 NOLLATIDSHNS
$S300¥d ‘NOILLIMDSANS ATIALSIOTI HOVHE Y04

0791 NOLLINIJIAA SSV'ID
HHL NI ¥425NA0¥d 40 INFWALVLS NOILVEV10d3d
ADNHANALIA YIONAOYd ANV AOHLIW SSIDDV

3

X

#0917 ORAVNHEDS HHL 40
LS1T LOVAII NI ¥92NAaodd 41 LOVIAT SSEO0dd

¢191 ¥42Ndodd
40 HONV.LSNI 40 NOLLINIZAA SSV710 SSAO0V

%

0191 HTNAOW AONV.LSNI MEN TTVD

®

US 9,201,766 B2

Sheet 58 of 63

Dec. 1, 2015

U.S. Patent

€691 ODOT LEVLS NOILNODIXT
AHL 0L ¥430NA0¥d AHL AdV ‘A9LNDIXd NA3d
HAVH ANV LSIXH S¥I2NA0¥d INIANHJAA TTV Al

%
0591
HOVH Y04 ANVININOD d30NA0dd JISSHALS MHN V
HAOANI ANV SYIONAOUd 4O JTHWNNN ININEFLEA
‘MON ANIWIALAA 99 OL ST LVHL NOLLVIV10dd
ADNHANAJIA FHL NI AONHANAdHd HOVA ¥0d

S¥91 (NHAAIYEIAO 1O
ANV SHIDONIANTdAd ANY

0t91 U
A4LNJAXANN SV 442NA0dd XAV

€691 NJAAIIIIAO
LON SV d4DNd0dd VI
A

(@ rox

0691 ANVINWOD dAITIIAONN
YIDNAO0Ed OL HAISNOJSHd

IPE TANOI

US 9,201,766 B2

Sheet 59 of 63

Dec. 1, 2015

U.S. Patent

2091 Ol —

¢NOLLINIAAA OIIVNAIS NI ¥d2NdO
JHLOVIAT ATLOTIId 40N ANV

L1¥€ SYOLSIONV TTV HLIM DNOTV
TINLINYLS ONIZIOVEL HLVd LDVdIWI 0L aayv

SIve (1SIXd ¥3D1d0¥d HHL S30d

HHL HLIM ¥90Nd0¥d V ANId ‘NOLLINIZAd ORIVNIOS

€19€ NOLLINIIAA
ORVNADS dHL NI AdX OIIVNADS AONTIHITA
dHL ANV AT d3D2NA0Ud ONIANOdSTHI0D

NI ¥92N000dd ddLOVdAT AT1DTdId HOVA 304

+

CIPE SUNLIMALS DNIIDVYEL HLVd LOVJINT ALVIINV.LSNI

v

61v€ ANOA

CTALVIINVLSNI HNLDNE

ONIMIOVYL HLVd LOVdAIL
SIA

A

$0r€ AHY ORIYNADS ANV TINLONULS ONIMOVIL
OTIVNIIS DNISN FANLONYLS HLVd LOVAAT 41vD01

are TANDIA

-

S09T WO

1091

US 9,201,766 B2

b€ TUNOI 109101
(ITEYL ¥IONAOUd

NI SLSIXd AAVAATV AT OIIVNADS + ADY AOHLAW + A9 HONVLSNI + ATH SSVTD-
S091 (SLSIXH AAVIATY d90Nd0Ud AISSTILS

Sheet 60 of 63

Dec. 1, 2015

Iss WO¥d

b€ TANOII €091 OL

: 8Te (MAN !

| JLVEAD STHAILVNYALTY | 625¢ MAN TLYAAO = NOLLVERO ¥HONAOUd Je——
| NV ‘OIMYNHOS LADYVL |

| dHL Y04 HAVYD ¥IONAOU |

| HL 40 NOLLIOd V |

| AINO ONIQTINgG NI SLINSTY | GZv€ (HAVHD ¥IDNAOU

| LVHL NOILYZINILAO | NI LSIX4 AT OTYVNADS SONHYHATS

| NV SI STHL) NOLLVERD) HLIM ¥EDNA0Ud ST0A

ON = NOLLVAY) ¥aAONAodd : S3A

ANOTO

SdA

U.S. Patent

2091 — 1091 WO¥A

US 9,201,766 B2

Sheet 61 of 63

Dec. 1, 2015

U.S. Patent

0¢91 OL

Chyt NIAAIYYEIAO SV 440N1Ad0Ud AIVIA

A

(11443
p (QTE V 4 FONVISNI NI ANV) FHOVD LNd1N0o
FAINAOYd NI 44INA0Ud 40 LNdLNO MAN 1AS

2
EPE ONIVNADS
GHL 4O LSI'T 1OVJAI AHL WO¥A A9 10VILXd
9tre ¥90NA0Yd 4O 1OV ALYTHdO¥ddY THL WO¥ YT LINVEVd
104100 MAN SV ORIVNHOS NOILVIAOISNVHL ONIANOdSTNI0D
dHL 40 LSI'T.LOVANL dHL ANV GOHLIN NOLLYWIOISNVYL
WOYd ILOVILXT LOVIAL YIINAOU 40 LNdLNO INTHAND
41VIidOdddy dH1 NOdd DNISN ¥ADNAOUd O LNdLAO MAN FLVIINAD
AONVISNI 1NdLOO NDISSV T

¢tpE ¥40NAO0YUd 40 LNdLNO INTIEND L35

0EPE GAALLV T ¥ADINAOUd NO LOVAI ST
(HLNTOS™gY “d'T) ON 4

7091 \K

TWNS O s291 ZOMHL

Dye H4NOIA

US 9,201,766 B2

Sheet 62 of 63

Dec. 1, 2015

U.S. Patent

Vet 3INODIA

0vZT OOT LAVLS

NOILLNDJAXH dHL O1 d3ddv A TMEN
SYIDNAOYUd NO AdSVH SYIDNA0dd
4LVAIANV?D 40 L4S 9HL 0L dav

)

CETT SNOLLJIYOSHNS

S$S400¥d ANV HOT ANV SY32NA0dd
JTIHAODSIA 04 SANVINWOD
YH4ONAOUd daSSHYLS MEAN HAO0ANI

%
0£77 AIATOSTY
44 0L AQvVTd SHIDNIANIAIA
QIATOSTINN ANV FATOSTY
0L SYFONA0Yd NOILLYNIWYA1dd
AONAANIdAA 34V LVHL
SYIONAOUd AQVIY 10 14S INTIND
AHL NI (SNADNA0Ud TLNDIXA

+

§TTT SYF2NA0¥d NOLLVNIWYHLAA
ADNHANAJHA A VdHId

OrLE DOT.IHVILS

NOILL(1O9XH dH1 OL a9dav A TMaN
SYIONAOUd NO daSvd SYHI0N1d0ud
dLVAIANYD 4O L3S 9HL OL ddv

0£LE SNOLLIYOSENS

SSI00¥d ANV DOT ANV S¥AINA0UEd
AIIIAOISIA 04 SANVININOD
AHDNA0¥d dISSTALS MAN IAOANI

0ZLE ALITdWODNI SV SYIONdodd
JALNDIXd NO ADNIANAdIAd
NOLLJIOSHNS ONIFJOSaV

NV JAVH LVHL SINHIVd ANV IV

01.€ SYAONAOY NOLLVIANTD
¥AONA0Yd AASSTULS IV LVHL
SYIDNA0Yd AQVAY A0 198 INTNIND
HHL NI (SPFDNAodd 91N0axd

027¢ LI TdNOINI
SV S430NdOdd
qd.Lndo4dx4d

NO ADNIANIddd
NOILdIIDSdNS
DNIFY0SgV

NV HAVH

LVHL SINF¥Vd
ANV XAVIN

A

$127 SYIDNA0Ud
@IVANYLS 39V
LVHL $990Nn00dd
AQVHTY 40

LAS INTIND HL
NI ($)930na0dd
ALNDdxd

A

J4230a0dd

@MAVANVLS

(B—»

€077 d41NDdXd 449 OL AAVHY 2V LVHL SYI0NA0Ud HLVAIANVD 40 LS INFHIND
AHL WO¥4 SYFONA0Ad 40 LASENS V ‘SYADNA0Ed AAVHY 40 LIS INTAIND V SV ‘1.0314S

A

0077 SYIDNA0Ad HLVAIANYD 40 L3S LNIIEND HHL SV DOT LIVLS NOILNJOHXH HHL
NO S¥40Nd0Ydd FHL NO ddsSvd d41LN23XH 38 OL SY40Nd0dd HLVAIANYD 40 138 LOITIS

MOTI NOLLNDIXH HAVHD HI2N1d0Ud

US 9,201,766 B2

Sheet 63 of 63

Dec. 1, 2015

U.S. Patent

0927 SYHDNAOYPd NOILIIIDSENS ONIHIOSHV H1ATIINOONI SSHD0dd §9TT HNOA

%

8YTT STINLONYLS
ONIAOVYHL

HLVd dONV.LSNI
T1V dSVATHY
SHA ANV TINLONALS
DNI2IDOVYL
ORIVNIOS NVOS

$5TT (HLATdANOD SNOLLAIIOSHNS TV

SALdWH SYIONAOUd ALVAIANYD 40 LIS —=

ON

SYTT SYIDNAO0Ed AAVIE ANV ALVAIANVD

40 SLAS LNIYUND FHL WOYd SY¥A0NA0¥d Ad.LNOFXT FAOWTY ANV ‘AdLNIIXANN SV MAVIN ANV
dd1n24dxd 39 OL SYFONAOUd ALVAIANYD 40 L3S HL OL SYIINAOUd INTIVd ANV AAY ‘AdYSSTIAN
SV DNIHOVO GINV.LSNI ANV DNIHOVD LNdLNO0 YFINA0¥Ud dLvAdN ‘TILNIIXE SV SYIONAOAd NAVIN

®

g5¢ TANDIA

US 9,201,766 B2

1
PRODUCER GRAPH ORIENTED
PROGRAMMING FRAMEWORK WITH
SCENARIO SUPPORT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
11/607,199, filed Dec. 1, 2006, which is hereby incorporated
by reference.

BACKGROUND

1. Field

Embodiments of the invention relate to the field of com-
puters; and more specifically, to the field of programming and
executing code with a runtime.

2. Background

Object-Oriented Programming

Object-oriented programming is a computer programming
paradigm. The idea behind object-oriented programming is
that a computer program may be seen as comprising a collec-
tion of individual units (called objects or instances) that act on
each other, as opposed to a traditional view in which a pro-
gram may be seen as a collection of functions, or simply as a
list of instructions to the computer. An object is a language
mechanism for binding data with methods that operate on that
data. Each object is capable of being called through methods,
processing data, and providing results to other objects. Each
object can be viewed as an independent machine or actor with
a distinct role or responsibility.

A reflective object-oriented language is a programming
language that has a particular set of characteristics (e.g.,
classes, objects/instances, inheritance, reflection, etc.),
whereas a reflective object-based language is sometimes used
to label a programming language that has some subset of
those characteristics (e.g., objects). For purposes of this docu-
ment, the phrases “object-oriented source code” and “object-
oriented code” will be used to refer to code written in a
language that has such characteristics (e.g., code written in a
reflective object-oriented language, code written in a reflec-
tive object-based language). While procedural languages,
non-reflective object-oriented languages, and non-reflective
object-based languages are programming languages that do
not typically support such characteristics, transformation
techniques may be used to provide such characteristics (e.g.,
through emulation) to code properly written in such lan-
guages; and thus, such techniques transform such languages
into a reflective object-based language or reflective object-
oriented language. (These techniques need not emulate all
characteristics of object oriented or based languages, but may
emulate only those characteristics which are of interest to the
rest of this document) For purposes of this document, the
phrases “object-oriented source code” and “object-oriented
code” will also be used to refer to such transformed proce-
dural, non-reflective object-oriented, and non-reflective
object-based language code. By way of example, and not
limitation, this document primarily describes object-oriented
source code written in a reflective object-oriented language.
Also, the terms object and instance are used interchangeably
herein.

Used mainly in object-oriented programming, the term
method refers to a piece of code that is exclusively associated
either with a class (called class methods, static methods, or
factory methods) or with an object (called instance methods).
Like a procedure in procedural programming languages, a
method usually consists of a sequence of statements to per-

10

20

25

30

40

45

55

2

form an action, a set of input parameters to parameterize those
actions, and possibly an output value of some kind that is
returned.

When programmers write a program using an object-ori-
ented language, the resulting code can be conceptually
viewed as including four basic types of code. The first type
includes commands that operate on input instance(s) to pro-
vide output instance(s) (referred to herein as “transforma-
tion” code); typically written as methods (referred to herein
as “transformation” methods). The second type includes
instance instantiation commands that cause the runtime to
instantiate instances of classes (referred to herein as “instance
instantiation” code). The third type includes property
manipulation commands (referred to herein as “data prepa-
ration” code) to invoke property methods (accessors, muta-
tors, etc.) of the above instances. The fourth type includes
sequences of commands that cause method invocation
sequencing using the appropriate instances (where the appro-
priate instances include the instances to use as arguments, the
instances to be used by instance methods, and the meta class
instances used by class methods) to specify what transforma-
tion methods of what instances to invoke, in which order, and
with which parameters of which instances responsive to the
changes made by data preparation code (referred to herein as
“manual invocation sequencing” code). The manual invoca-
tion sequencing code is sometimes written as methods sepa-
rate from the transformation methods, and thus the manual
invocation sequencing code includes sequences of invocation
commands for the transformation methods. A program typi-
cally iterates between data preparation code and manual invo-
cation sequencing code (which may also dip into the instance
instantiation code), which in turn invokes transformation
code (which may also dip into the instance instantiation code
and data preparation code types). It should be noted that this
is a conceptual representation of a program, and thus, should
not be taken as an absolute with regard to how to view a
program.

Runtime

The term runtime is used herein to refer to a program or
library of basic code that runs other code written in the same
and/or a different language. Thus, a runtime is a collection of
utility functions that support a program while it is running,
including working with the operating system to provide
facilities such as mathematical functions, input and output.
These make it unnecessary for programmers to continually
rewrite basic capabilities specified in a programming lan-
guage or provided by an operating system. Since the demar-
cation between a runtime and an operating system can be
blurred, the term runtime is used herein to refer to code
separate from the operating system and/or code that is part of
the operating system.

Early runtimes, such as that of FORTRAN, provide such
features as mathematical operations. Other languages add
more sophisticated features—e.g., memory garbage collec-
tion, often in association with support for objects. More
recent languages tend to have considerably larger runtimes
with considerably more functionality. Many object-oriented
languages also include a system known as the “dispatcher”
and “class loader.”” The Java Virtual Machine (JVM) is an
example of such a runtime: it also interprets or compiles the
portable binary Java programs (byte-code) at run time. The
common language runtime (CLR) framework is another
example of a runtime.

Programming and Execution Framework

One framework within which applications are provided to
end users includes three basic divisions. The first division
includes the creation of the operating system and runtime.

US 9,201,766 B2

3

This first division is performed by programmers with highly
advanced programming skills. When working in this division,
programmers are respectively referred to as operating system
programmers and runtime programmers. When creating a
runtime for an object-oriented language, the runtime pro-
grammers include support for executing the various types of
commands used in transformation code, instance instantia-
tion code, data preparation code, and manual invocation
sequencing code (e.g., instance instantiation commands, data
preparation commands, and method invocation commands).

The second division includes the creation of object-ori-
ented application source code to be run by the runtime. The
second division is again performed by programmers with
highly advanced programming skills, as well as an under-
standing of the business objectives of the application. When
working in this division, programmers are referred to as appli-
cation programmers. When creating an application in an
object-oriented programming language, the application pro-
grammers write the specific transformation code, instance
instantiation code, data preparation code, and manual invo-
cation sequencing code for the specific application being
created. As part of this, if the application requires a graphical
user interface, the application programmers also design and
code the graphical user interface for the specific application;
and thus are also referred to as application designers.

The third division includes the use of application programs
being run by the runtime. The third division is performed by
end users that need not have any programming skills.

Manual Invocation Sequencing Code

The greatest costs typically associated with the creation of
an application involve the debugging and/or optimization of
the manual invocation sequencing code. For each opportunity
for data to change, the application programmer must consider
its effect and write manual invocation sequencing code to
cause the appropriate transformation methods of the appro-
priate instances to be invoked in the appropriate order with the
appropriate inputs. Exemplary mistakes made by application
programmers include: 1) invoking the appropriate transfor-
mation methods of the appropriate instances in the wrong
order; 2) forgetting to include commands to cause the one or
more required transformation methods of instances to be
invoked responsive to some data being changed; 3) including
commands to cause unnecessary transformation methods of
instances to be invoked responsive to some data being
changed (e.g., including commands to invoke transformation
methods of instances that are not affected by the change in
data), etc.

By way of example, one technique of generating manual
invocation sequencing code is the use of the observer pattern
(sometimes known as “publish subscribe”) to observe the
state of an instance in a program. In the observer pattern, one
ormore instances (called observers or listeners) are registered
(or register themselves) to observe an event which may be
raised by the observed object (the subject). The observed
instance, which may raise an event, generally maintains a
collection of the registered observers. When the event is
raised, each observer receives a callback from the observed
instance (the observed instance invokes a “notify” method in
the registered observers). The notify function may pass some
parameters (generally information about the event that is
occurring) which can be used by the observers. Each observer
implements the notify function, and as a consequence defines
its own behavior when the notification occurs.

The observed instance typically has a register method for
adding a new observer and an unregister method for removing
an observer from the list of instances to be notified when the
event is raised. Further, the observed instance may also have

20

25

40

45

55

4

methods for temporarily disabling and then reenabling calls
to prevent inefficient cascading of a number of related
updates. Specifically, callbacks called in response to a prop-
erty value change often also change values of some other
properties, triggering additional callbacks, and so on.

When using the observer pattern technique, application
programmers writing manual invocation sequencing code
specify what methods of what instances to call, in which
order, and with which inputs by registering, unregistering,
disabling, and reenabling observers to different observed
instances, as well as writing the notify and callback methods
for each. More specifically, the relationship between observer
and observed instances is locally managed (by the observed
instance alone, without synchronization with other observed
instances) within the observer pattern, and thus the manual
invocation sequencing code needed to synchronize events
from multiple observed instances is typically part of the spe-
cific callback methods of each observer.

Overwriting, Volatile Call Stack

Typical runtimes use an overwriting, volatile call stack to
track currently invoked, uncompleted calls. An overwriting,
volatile call stack is overwriting in that it pops off and dis-
cards entries as each call is completed, and volatile in that it is
discarded and rebuilt on every execution. Typical runtimes
use overwriting, volatile call stacks because typical runtimes
combine the building of the overwriting, volatile call stack
with the actual invocation of the appropriate transformation
methods of the appropriate instances with the appropriate
inputs responsive to execution of the manual invocation
sequencing code. In sum, responsive to execution of manual
invocation sequencing code, a typical runtime determines the
transformation method/instance sequencing call by call (as
each call is made) and maintains the overwriting, volatile call
stack to track only currently invoked, uncompleted calls.

Object-Relational Mapping

Object-Relational mapping is a programming technique
that links relational databases to object-oriented language
concepts, creating (in effect) a “virtual object database.”
Some object-relational mappers automatically keep the
loaded instances in memory in constant synchronization with
the database. Specifically, after construction of an object-to-
SQL mapping query, first returned data is copied into the
fields of the instances in question, like any object-SQL map-
ping package. Once there, the instance has to watch to see if
these values change, and then carefully reverse the process to
write the data back out to the database.

Hibernate 3.0 is an object-relational mapping solution for
Java and CLR (Jboss® Inc. of Atlanta, Ga.). Thus, Hibernate
provides a framework for mapping an object-oriented domain
model to a traditional relational database. Its goal is to relieve
the developer from some common data persistence-related
programming tasks. Hibernate takes care of the mapping
from classes to database tables (and from object-oriented data
types to SQL data types), as well as providing data query and
retrieval facilities. Hibernate is instance centric and builds
graphs representing relationships between instances.

Inversion of Control and the Dependency Inversion Prin-
ciple

Inversion of Control, also known as IOC, is an object-
oriented programming principle that can be used to reduce
coupling (the degree to which each program module relies on
each other module) inherent in computer programs. I0C is
also known as the Dependency Inversion Principle. In IOC, a
class X depends on class Y if any of the following applies: 1)
X has aY and calls it; 2) X is a Y; or 3) X depends on some
class Z that depends onY (transitivity). It is worth noting that
X depends on Y does not imply Y depends on X; if both

US 9,201,766 B2

5

happen to be true, it is called a cyclic dependency: X can’t
then be used without Y, and vice versa.

In practice, if an object x (of class X) calls methods of an
objecty (of class Y), then class X depends on Y. The depen-
dency is inverted by introducing a third class, namely an
interface class I that must contain all methods that x might call
ony. Furthermore, Y must be changed such that it implements
interface I. X andY are now both dependent on interface [and
class X no longer depends on class Y (presuming that x does
notinstantiateY). This elimination of the dependency of class
X onY by introducing an interface I is said to be an inversion
of control (or a dependency inversion). It must be noted that
Y might depend on other classes. Before the transformation
had been applied, X depended on Y and thus X depended
indirectly on all classes that'Y depends on. By applying inver-
sion of control, all those indirect dependencies have been
broken up as well. The newly introduced interface I depends
on nothing.

The Spring Framework is an open source application
framework for the Java platform that uses IOC and depen-
dency inversion. Specifically, central in the Spring Frame-
work is its Inversion of Control container that provides a
means of configuring and managing Java objects. This con-
tainer is also known as BeanFactory, ApplicationContext or
Core container. Examples of the operations of this container
are: creating objects, configuring objects, calling initializa-
tion methods and passing objects to registered callback
objects. Objects that are created by the container are also
called Managed Objects or Beans. Typically the container is
configured by loading XML files that contain Bean defini-
tions. These provide all information that is required to create
objects. Once objects are created and configured without
raising error conditions they become available for usage.
Objects can be obtained by means of Dependency lookup or
Dependency injection. Dependency lookup is a pattern where
a caller asks the container object for an object with a specific
name or of a specific type. Dependency injection is a pattern
where the container passes objects by name to other objects,
either via constructors, properties or factory methods. Thus,
the Spring Framework is memory centric and builds graphs
representing relationships between instances.

Graphing Tools

Javadoc™ is a tool that parses the declarations and docu-
mentation comments in a set of Java source files and produces
a corresponding set of HTML pages describing (by default)
the public and protected classes, nested classes (but not
anonymous inner classes), interfaces, constructors, methods,
and fields (Sun Microsystems®, Inc. of Santa Clara, Calif.).
Javadoc can be used to generate the API (Application Pro-
gramming Interface) documentation or the implementation
documentation for a set of source files. Javadoc is class and
method centric and builds graphs representing the relation-
ships between the combination of classes and their methods.

Another system for designing software applications
includes graphs of objects analyzed by an interpreter to rep-
resent and reproduce a computer application. This system
utilizes prewritten programming classes stored in code librar-
ies, which can be written to follow the design patterns
described in “Design Patterns” by Gamma et al, Addison
Wesley 1995, “Patterns in Java” by Grand, Wiley Computer
Publishing 1998, and/or high level Computer Aided Software
Engineering (CASE) tools. More specifically, some such
classes are based on the Observer behavioral pattern. The
prewritten code libraries represent application state nodes,
processing logic, and data flow of the system between various
application states (i.e., the pre-written data elements of the
application), so that a user need not write, edit, or compile

5

10

15

20

25

30

35

40

45

55

60

65

6

code when creating a software application. Instead, a user
manually edits a software application in a Graphical User
Interface by editing visual objects associated with a current
application state node, such as data within the application
state node or processes performed within the application state
node. Then, based on the changes made by the user to the
current application state node, the interpreter displays the
updated application state to the user for the application state
which has just been edited. The system may then transition
along a user-defined transitional edge to another application
state where the user may optionally edit the next application
state or the transitional edge. Changes to a graph may be made
to instances of the graph which are implemented by the inter-
preter while the software application is running.

This system for designing software applications may
include visual representations of a running software applica-
tion that can be made “usable” with an application controller.
When a user changes visual objects, representing the running
software application, the controller uses the input to induce
the interpreter to make the change to the graph. The controller
then waits for more changes. Further, visual representations
of'such software applications may be imported or exported as
XML documents that describe the visual representation of the
application, and thereby the software application.

In order to edit and/or create a software application, in the
form of a visual representation of nodes, directed edges, and
application states, an application program interface and an
application editor may further be included in the system. Key
words, and associated definitions, from the pre-written code
libraries, enable application developers to manually define a
software application, processing steps, as well as the visual
representation of a software application by providing graphi-
cal representations, within an editor, of a graph application
which closely correlates to the actual application structure. A
user defines a new application through an “application defi-
nition wizard,” which after certain preliminary matters are
fulfilled, displays the new application as a graph component
within the editor workspace. A user further interacts with an
application by making selections from displayed lists of pre-
created possible application components and dragging and
dropping components onto the workspace using a PC’s
mouse and keyboard. A user may select components and
“drag” them over existing components. When a new compo-
nent is “dropped” on an existing component, the new com-
ponent becomes a child of the existing component within an
application graph. The relationships of components within
the application are manually defined by the user’s selections
within the editor. Thus a tree structure representing an appli-
cation is built by the user. As the application is created, a user
can select an application navigator viewer to display a tree
view of the constructed application making it possible to
select and edit any component of the application. The editor
interface processes user inputs and selections including cre-
ating or deleting application elements, updating component
attributes, and updating display properties of an application.

The system described above, while utilizing visual repre-
sentations of software applications, may also be used as a
visual programming tool for defining and updating relational
databases. The system utilizes XML descriptions of visual
representation of software applications. A tool parses and
interprets the XML descriptions to produces equivalent rela-
tional database table schemas, as well as changes thereto.
When data is changed within a visual representation of a
software application, a description of the change is stored
along with other changes in a journal file and then processed
as a group. An intermediate program (a java application oper-
ating on its own thread) performs transactions between the

US 9,201,766 B2

7

visual representation of the software application and the rela-
tional database. The java application polls (i.e., checks) the
journal of changes to nodes of the visual representation (i.e.,
data in database), and if there are changes, makes the changes
to the database. Thus, by altering data within the visual rep-
resentation, the system updates a database. A similar appli-
cation stands between the visual representation of the soft-
ware application and the database to handles requests for data
from the database.

Another system for analyzing software is called a Code
Tree Analyzer (CTA). A CTA analyzes static source code
written in an object-oriented programming language. The
CTA generates a symbol table and a call tree from the static
source code. Using the symbol table, the CTA generates a
class diagram. Likewise, using the call tree, the CTA gener-
ates a sequence diagram. The class diagram illustrates the
relationship between a user selected class and classes related
to the user selected class. The sequence diagram illustrates
the sequence in which different methods are called. Using
both the class diagram and the sequence diagram, the CTA
generates a design artifact representative of the static source
code. When the user modifies the design artifact, the CTA
identifies impacted portions of the source code using the
sequence diagram. The design artifact is used for code main-
tenance and/or reverse engineering of the static source code.

BRIEF SUMMARY

Embodiments of a producer graph oriented programming
framework with scenario support are presented. In one
embodiment, a request to evaluate potential impacts by a
change on an application program is received. The applica-
tion program includes a set of producers, each having at least
an instance and a method associated with the instance.
Responsive to the request, the application program may be
simulated with the change while the existing states and exist-
ing outputs of the producers are preserved.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the draw-
ings:

FIG. 1A is a block diagram illustrating the relationship of
a producer dependency declaration for a method of'a class in
object oriented-source code to a producer that includes the
class, a given instance of that class, and a method of that class,
according to one embodiment of the invention;

FIG. 1B illustrates exemplary relationships between the
producer 110A and the parent producer 114A.1 according to
one embodiment of the invention;

FIG. 1C illustrates exemplary relationships between the
producer 110A and the child producer 112A.1 according to
one embodiment of the invention;

FIG. 1D illustrates some additional exemplary combina-
tions of relationships of parent producers 114 and child pro-
ducers 112 to producer 110A according to one embodiment
of the invention;

FIG. 1E illustrates that different instances of the same class
can have producers based on the same and/or different meth-
ods according to one embodiment of the invention;

FIG. 2 is a block diagram illustrating the reusability of a
runtime with producer graph oriented programming support
according to one embodiment of the invention;

40

45

8

FIG. 3A is a block diagram illustrating a runtime with
producer graph oriented programming support according to
one embodiment of the invention;

FIG. 3B is a block diagram illustrating a runtime with
producer graph oriented programming support that also sup-
ports incremental execution and overridden producer outputs
according to one embodiment of the invention;

FIG. 4A is a block diagram illustrating the discovery and
building of an exemplary producer graph according to one
embodiment of the invention;

FIG. 4B is a block diagram illustrating the initial execution
of the producer graph of FIG. 4A according to one embodi-
ment of the invention;

FIG. 4C is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B according to one
embodiment of the invention;

FIG. 4D is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden according to one embodiment
of the invention;

FIG. 4E is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden and independent source pro-
ducer 3 has been modified according to one embodiment of
the invention;

FIG. 5A is a block diagram illustrating the discovery and
building of an exemplary producer graph including an unre-
solved dependency according to one embodiment of the
invention;

FIG. 5B is a block diagram illustrating the initial execution
of the producer graph of FIG. 5A and the resolution of the
unresolved dependency according to one embodiment of the
invention;

FIG. 5C is a block diagram illustrating the initial execution
of'the producer graph of FIG. 5A and/or the reexecution of the
producer graph of FIG. 5B according to one embodiment of
the invention;

FIG. 5D is a block diagram illustrating the initial execution
of'the producer graph of FIG. 5A and/or the reexecution of the
producer graph of FIG. 5B or 5C according to one embodi-
ment of the invention;

FIG. 6 is a flow diagram illustrating a logical execution
flow of a runtime client and its relationship to a runtime with
producer graph oriented programming support according to
one embodiment of the invention;

FIG. 7A illustrates pseudo code of a producer dependency
declaration for a method using shortcut declared dependen-
cies according to one embodiment of the invention;

FIG. 7B is ablock diagram of exemplary producers accord-
ing to one embodiment of the invention;

FIG. 7C illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut declared
dependency, and illustrates a block diagram of exemplary
producers according to one embodiment of the invention;

FIG. 7D illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut declared
dependency according to one embodiment of the invention;

FIG. 7E is a block diagram of exemplary producers accord-
ing to one embodiment of the invention;

FIG. 7F is a block diagram of an exemplary dependencies
through use of a UpwardDependency with a dependency
determination producer according to one embodiment of the
invention;

FIG. 7G is a block diagram of possible exemplary depen-
dencies through use of a WeaklyConstrainedDependency
with a dependency determination producer according to one
embodiment of the invention;

US 9,201,766 B2

9

FIG. 7H illustrates exemplary producer graphs of standard
producers according to one embodiment of the invention;

FIG. 71 illustrates one example of producer dependencies
and dependency determination producers for discovering,
resolving, and building the producer graph of FIG. 7H.

FIG. 8A is a block diagram illustrating a first exemplary
framework within which applications are provided to end
users according to one embodiment of the invention;

FIG. 8B is a block diagram illustrating a second exemplary
framework within which applications are provided to end
users according to one embodiment of the invention;

FIG. 8C illustrates an exemplary screenshot and usage of
free cell selection with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention;

FIG. 8D illustrates another exemplary screenshot and
usage of free cell selection with the configurable interactive
producer output layout graphical user interface module 840
according to one embodiment of the invention;

FIG. 8E illustrates an exemplary screenshot and usage of
table creation with the configurable interactive producer out-
put layout graphical user interface module 840 according to
one embodiment of the invention;

FIG. 8F illustrates another exemplary screenshot and usage
of table creation with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention;

FIG. 9A is a block diagram illustrating a first scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention;

FIG. 9B isablock diagram illustrating a second scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention;

FIG. 9C is a block diagram illustrating a third scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention;

FIG. 10 is a block diagram of an exemplary implementa-
tion according to one embodiment of the invention;

FIG. 11A is a block diagram of an example of the class
tracking structure 1092 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11B is a block diagram of an example of the instance
tracking structure 1065 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11C is a block diagram of an example of the producer
graph(s) structure 1060 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 11D is a block diagram of an example of the method
tracking structure 1058 of FIG. 10 according to one embodi-
ment of the invention;

FIG. 12 is a block diagram illustrating additional detail of
FIG. 10 to support contingent and subscription type dynamic
producer dependencies according to one embodiment of the
invention;

FIG. 13A illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut declared, non-
dynamic (non-contingent, non-subscription) dependency
according to one embodiment of the invention;

FIG. 13B is a block diagram of producers illustrating an
exemplary non-shortcut declared, non-dynamic (non-contin-
gent, non-subscription) producer dependency according to
one embodiment of the invention;

FIG. 13C illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut declared, con-
tingent, non-subscription producer dependency according to
one embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 13D is a block diagram of producers illustrating an
exemplary non-shortcut declared, contingent, non-subscrip-
tion producer dependency according to one embodiment of
the invention;

FIG. 13E illustrates pseudo code of producer dependency
declarations for methods using both a non-shortcut declared,
contingent, non-subscription producer dependency and a
shortcut declared, contingent, non-subscription producer
dependency according to one embodiment of the invention;

FIG. 13F is a block diagram of producers illustrating a
non-shortcut declared, contingent, non-subscription pro-
ducer dependency and a shortcut declared, contingent, non-
subscription producer dependency according to one embodi-
ment of the invention;

FIG. 13G illustrates pseudo code of producer dependency
declarations for methods using a shortcut declared, contin-
gent, non-subscription producer dependency and a shortcut
declared, non-contingent, non-subscription producer depen-
dency according to one embodiment of the invention;

FIG. 13H is a block diagram of producers illustrating an
exemplary shortcut declared, contingent, non-subscription
producer dependency and a shortcut declared, non-contin-
gent, non-subscription producer dependency according to
one embodiment of the invention;

FIG. 131 illustrates pseudo code of producer dependency
declarations for methods using a shortcut declared, non-dy-
namic (non-contingent, non-subscription) producer depen-
dency according to one embodiment of the invention;

FIG. 13] is a block diagram of producers illustrating an
exemplary shortcut declared, non-dynamic producer depen-
dency according to one embodiment of the invention;

FIG. 14A is a block diagram of an example of the subscrip-
tion log 1250 of FIG. 12 according to one embodiment of the
invention;

FIG. 14B is a block diagram of exemplary producers illus-
trating a non-contingent, absorbing subscription producer
dependency according to one embodiment of the invention;

FIG. 14C is a block diagram of exemplary producers illus-
trating a non-contingent, sticky subscription producer depen-
dency according to one embodiment of the invention;

FIG. 14D illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a sticky subscription according to one embodiment of the
invention;

FIG. 14E illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a child dependency determination producer, which child
dependency determination producer is linked by a sequenc-
ing dependency, according to one embodiment of the inven-
tion;

FIG. 15 is a flow diagram for instantiating new instances
according to one embodiment of the invention;

FIG. 16 is a flow diagram for instantiating new producers
and unoverriding producers according to one embodiment of
the invention;

FIG. 17 is a flow diagram for block 1650 of FIG. 16
according to one embodiment of the invention;

FIG. 18 is a flow diagram for block 1745 of FIG. 17
according to one embodiment of the invention;

FIG. 19 is a flow diagram for block 1630 of FIG. 16
according to one embodiment of the invention;

FIG. 20 is a flow diagram for blocks 1635 and 1670 of F1G.
16 according to one embodiment of the invention;

FIG. 21 is a flow diagram for overriding producers accord-
ing to one embodiment of the invention;

US 9,201,766 B2

11

FIG. 22A is a part of a flow diagram for execution of the
current producer graph(s) according to one embodiment of
the invention;

FIG. 22B is another part of a flow diagram for execution of
the current producer graph(s) according to one embodiment
of the invention;

FIG. 23 is a flow diagram for block 2205 of FIG. 22
according to one embodiment of the invention;

FIG. 24 is a flow diagram for block 2225 of FIG. 22
according to one embodiment of the invention;

FIG. 25 is a flow diagram for block 2260 of FIG. 22
according to one embodiment of the invention;

FIG. 26 illustrates an alternative embodiment of the inven-
tion that supports scenario;

FIG. 27A is a block diagram illustrating a runtime with
producer graph oriented programming support as well as
scenario support according to one embodiment of the inven-
tion;

FIG. 27B is a block diagram illustrating a runtime with
producer graph oriented programming support that also sup-
ports incremental execution and overridden producer outputs,
as well as scenario, according to one embodiment of the
invention;

FIGS. 28A-D illustrate some exemplary producer graphs
of an application program for different scenarios;

FIG. 29 is a flow diagram of a logical execution flow of a
runtime client and its relationship to a runtime with producer
graph oriented programming support according to one
embodiment of the invention;

FIG. 30 is a block diagram of an alternative implementa-
tion according to one embodiment of the invention that sup-
ports scenario;

FIG. 31A illustrates one exemplary embodiment of a class
tracking structure;

FIG. 31B illustrates one exemplary embodiment of an
instance tracking structure;

FIG. 31C illustrates one exemplary embodiment of a pro-
ducer graph structure;

FIG. 31D illustrates one exemplary embodiment of a sce-
nario tracking structure;

FIG. 31E illustrates one exemplary embodiment of a sce-
nario object tracking structure;

FIG. 31F illustrates one exemplary embodiment of an
impact list;

FIG. 32 is a flow diagram illustrating a new scenario instan-
tiation flow according to one embodiment of the invention;

FIG. 33 is a flow diagram illustrating a new instance instan-
tiation flow that supports scenario according to one embodi-
ment of the invention;

FIGS. 34A-34G illustrate flow diagrams of instantiation of
a new stressed producer in a target scenario according to one
embodiment of the invention; and

FIGS. 35A-35B are flow diagrams illustrating a stressed
producer graph execution flow according to one embodiment
of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details
such as logic implementations, opcodes, means to specity
operands, resource partitioning/sharing/duplication imple-
mentations, types and interrelationships of system compo-
nents, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the
invention. It will be appreciated, however, by one skilled in
the art that the invention may be practiced without such spe-
cific details. In other instances, control structures, data struc-

10

15

20

25

30

35

40

45

50

55

60

65

12

tures, and full software instruction sequences have not been
shown in detail in order not to obscure the invention. Those of
ordinary skill in the art, with the included descriptions, will be
able to implement appropriate functionality without undue
experimentation.

Unless otherwise specified, dashed lines in the figures
(with the exception of dashed dividing lines) are used to
represent optional items in the figures. However, it should not
be presumed that all optional items are shown using dashed
lines, but rather those shown in dashed lines were chosen for
a variety of reasons (e.g., they could be easily shown, to
provide greater clarity, etc.).

References in the specification to “one embodiment”, “an
embodiment”, “an example embodiment”, etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. Rather, in particular
embodiments, “connected” may be used to indicate that two
or more elements are in direct contact with each other.
“Coupled” may mean that two or more elements are in direct
contact. However, “coupled” may also mean that two or more
elements are not in direct contact with each other, but yet still
co-operate or interact with each other.

In some cases, the operations of flow diagrams are
described with reference to the exemplary embodiments of
the other block diagrams. However, it should be understood
that the operations of the flow diagrams can be performed by
embodiments of the invention other than those discussed with
reference to these other block diagrams, and that the embodi-
ments of the invention discussed with reference to these other
block diagrams can perform operations different than those
discussed with reference to the flow diagrams.

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
computers. Such computers store and communicate (inter-
nally and with other computers over a network) code and data
using machine-readable media, such as machine storage
media (e.g., magnetic disks; optical disks; random access
memory; read only memory; flash memory devices) and
machine communication media (e.g., electrical, optical,
acoustical or other form of propagated signals—such as car-
rier waves, infrared signals, digital signals, etc.). In addition,
such computers typically include a set of one or more proces-
sors coupled to one or more other components, such as a
storage device, a number of user input/output devices (e.g., a
keyboard and a display), and a network connection. The cou-
pling of the set of processors and other components is typi-
cally through one or more busses and bridges (also termed as
bus controllers). The storage device and network traffic
respectively represent one or more machine storage media
and machine communication media. Thus, the storage device
of'a given computer system typically stores code and data for
execution on the set of one or more processors of that com-
puter. Of course, one or more parts of an embodiment of the
invention may be implemented using different combinations
of software, firmware, and/or hardware.

US 9,201,766 B2

13

Overview

According to one aspect of the invention, a producer is at
least a specific instance (or object) and a specific method,
such that if the producer is executed during run time, the
specific method is executed on the specific instance. Thus, a
given producer is instantiated from a given instance and a
given method associated with that instance. Like classes,
instances, and methods, producers are basic elements or con-
structs manipulated by the runtime. Thus, the instantiation of
aproducer is interpreted and tracked by the runtime, and thus
the runtime tracks the combination of instances and methods
represented by producers. In other words, a producer is a
runtime instantiatable construct that is tracked by the runtime,
that is executed by the runtime, and that includes at least an
instance and a method associated with that instance, such that
the runtimes execution of the producer results in the method
of the producer being executed on the instance of the pro-
ducer. Also, the method of a producer has associated with it a
producer dependency declaration that identifies, with a set of
zero or more producer dependencies, a set of zero or more
producers for the given producer. Specifically, producer
dependencies are declared for methods using producer
dependency declarations, the producer dependency declara-
tion for a given method may include zero or more producer
dependencies, and each producer dependency identifies a set
of zero or more producers. Thus, producer dependency dec-
larations and the producer dependencies they define are inter-
preted and tracked by the runtime, and thus the runtime tracks
the relationships between producers indicated by the pro-
ducer dependency declarations.

Where a given producer is dependent on a set of one or
more other producers, the runtime will ensure execution of
the set of other producers prior to the given producer. Thus,
the producer dependency declarations represent execution
relationships between producers, while producers represent
operations to be performed (methods) and instances. While in
some embodiments of the invention allow dependencies of
parent producers on child producers to be declared in the
producer dependency declaration associated with the method
of the parent producer (the producer dependency declaration
of the parent producer identifies any child producers—re-
ferred to herein as downwardly declared), other embodiments
of'the invention also allow dependencies to be declared in the
producer dependency declaration associated with the
method(s) of child producer(s) (the producer dependency
declaration of the child producer identifies one or more parent
producers—referred to herein as upwardly declared).

In different embodiments of the invention a producer iden-
tifies additional things. For example, while in some embodi-
ments of the invention a producer is at least an instance and
method associated with that instance, in other embodiments
of'the invention a producer is a class, an instance of that class,
and a method associated with that instance (e.g., a producer
may directly include a class, instance, and method; a producer
may directly include an instance and a method, while indi-
rectly identitying a class of that instance through a reference
(e.g., areference in the instance)). While the invention may be
used in the context of code written in different programming
languages (e.g., object-oriented code written in a reflective
object-oriented language; object-oriented code written in a
reflective object-based language; code written in a proce-
dural, non-reflective object-oriented, non-reflective object-
based language and transformed into reflective object-ori-
ented language code), embodiments of the invention will be
described, by way of example and not limitation, with refer-
ence to reflective object-oriented programming languages
and with reference to producers that directly include classes,

10

15

20

25

30

35

40

45

50

55

60

65

14

instances and methods. Also, while in one embodiment of the
invention the method of a producer is an instance method (a
method that can use instance fields in addition to any inputs
received as arguments), alternative embodiments of the
invention may also or alternatively support the method of a
producer being a class method (methods that receive all
inputs as arguments and/or uses instance independent vari-
ables) (where the method ofa producer is an instance method,
the instance of that producer is an instance of a class; while
where the method of a producer is a class method, the instance
of that producer is a meta-class instance representing the
class).

FIG. 1A is a block diagram illustrating the relationship of
a producer dependency declaration for a method of'a class in
object oriented-source code to a producer that includes the
class, a given instance of that class, and a method of that class,
according to one embodiment of the invention. In FIG. 1A,
object-oriented source code 100 is shown including a class
102, which in turn includes a method 104 and a producer
dependency declaration 106 for the method 104. Of course,
the class 102 would typically include one or more fields (not
shown) and additional methods (not shown). In addition, the
object-oriented source code 100 would typically include
additional classes.

During run time, an instance 108 of the class 102 is instan-
tiated. The instance 108 includes the data of the fields of the
class 102. In addition, a producer 110 is instantiated, where
the producer 110 identifies the class 102, the instance 108 of
the class 102 (which has associated with it the method 104 of
the class 102), and the method 104 of the class 102. The
producer dependency declaration 106 identifies to the runt-
ime a set of zero or more producers 112 (referred to as child
producers of the producer 110) that must be executed before
execution of the producer 110. In other words, the producer
110 depends on the set of zero or more producers 112. In
addition to or instead of consuming outputs of the set of
producer 112, the producer 110 may consume data of the
instance 108. In addition, the producer 110 provides at least
one output, which output may be internal to the instance 108
(and thus, modify the data of the instance 108) and/or may be
external; either way, the output of the producer 110 may be
consumed by a set or zero or more other producers 114
(referred to as parent producers of the producer 110)). As
indicated previously, and described in more detail later
herein, the producer dependency declaration 106, in some
embodiments of the invention, may also identify to the runt-
ime zero or more of the producers 114.

It should be understood that the inputs and outputs of
producers are based on the inputs and outputs of the methods
on which those producers are based. As such, these input and
outputs may represent multiple parameters having a variety of
data structures.

The producer dependency declaration for a given method
identifies at run time the set of zero or more producers to be
instantiated and executed. By way of example, where a pro-
ducer dependency declaration (e.g., producer dependency
declaration 106) for a given method (e.g., method 104) iden-
tifies a producer dependency on a given producer (which
given producer identifies a first class, a first instance of that
class, and a first method of that first class) (e.g., one of the set
of producers 112), then the producer dependency declaration
of the given method identifies to the runtime that the first
instance is to be instantiated (if not already) and that the first
method is to be used to instantiate the given producer for the
first instance (in these examples, first does not mean location
or order).

US 9,201,766 B2

15

In operation, when, during run time, a given set of one or
more producers are designated as being of interest and have
producer dependencies declared for them, the runtime: 1)
automatically generates (discovers, builds, and optionally
resolves) a set of one or more graphs, which may be multi-
level and may be of a variety of shapes (e.g., chain, tree), from
the given set of producers designated as being of interest
down to source producers based on the producer dependency
declarations; and 2) sequences execution of producers of the
set of graphs to generate the output(s) of the given set of
producers designated as being of interest. Thus, the runtime
uses the producer dependency declarations to determine what
methods with what arguments to execute on what instances,
and when for synchronization purposes.

Thus, producer dependencies represent the sequencing of
execution of producers to the runtime. However, in addition to
indicating the sequencing of execution, producer dependen-
cies may represent different input to output relationships in
different embodiments of the invention. For example, difter-
ent embodiments of the invention may support one or more of
argument producer dependencies, field producer dependen-
cies, and sequencing only producer dependencies (sequenc-
ing only producer dependencies are referred to herein with
the shorthand sequencing producer dependencies). While
each of argument producer dependencies, field producer
dependencies, and sequencing producer dependencies repre-
sent execution sequencing relationships between producers,
argument and field producer dependencies additionally rep-
resent data of which the runtime is aware. Specifically, an
argument producer dependency causes the runtime to map the
output of a child producer as an input parameter to a parent
producer, whereas a field producer dependency indicates use
of a field of an instance. Regardless of the input to output
relationship represented by a producer dependency, proper
use of producer dependencies ensures that the producers
accessing information are sequenced after the producers that
impact that information.

Sequencing dependencies may be used for a variety of
purposes, including ensuring the order of execution between
producers that modify data in a manner of which the runtime
is not aware and producers that consume that data (a child
producer may write its outputs in a way that requires the
method of the parent producer to include code to access that
output (e.g., a method that impacts the environment by affect-
ing an output that is not the regular producer output and, as
such, that is not detected by the runtime—such as a method
that sets a global variable, that sets a field in an instance which
is not the producer output, that impacts an external data
source, etc.)) Thus, a sequencing dependency reflects a
dependency of a parent producer on a child producer, but
requires outputs that need to be provided, if any, from one to
the other occur through the writing of code (e.g., code in the
method of the child producer to write an output to a given
mechanism (such as set a global variable, impact an external
data source, set a field of an instance which is not the producer
output, etc.) and code in the method of the parent producer to
read that output from the given mechanism). In this way,
sequencing dependencies allow the runtime to synchronize
execution of any parent producers that rely on an output that
the runtime cannot detect. Affecting sources (such as global
variables or external data sources) that the runtime is not
aware of and reading from these sources is a feature that
should be avoided in producers where scenario capabilities
are required.

In one embodiment of the invention the producer depen-
dency declaration for a given method identifies only direct
dependencies on producers (e.g., direct descendents (chil-

10

20

25

30

35

40

45

50

55

60

65

16

dren), in contrast with indirect descendents (grand-children,
great grand-children, etc.)). In such an embodiment, each
producer dependency declaration provides only a single tier
or layer of producers whose outputs may be used directly by
a producer instantiated from the given method; leaving dis-
covery/building/resolution of additional layers of the pro-
ducer graph(s) to the runtime’s processing of other producer
dependency declarations.

Exemplary Keys

A producer can be viewed as a set of multiple identifiers,
one identifier for each additional level of granularity specified
(class, instance, method, etc.). In addition, some embodi-
ments of the invention implement each identifier as a separate
key, while other embodiments have certain identifiers share a
key. By way of example, some embodiments of the invention
implement a producer as a class, instance, and method triplet
and implement keys, such that each part of the triplet is
identified by a separate key (a class key, instance key, and
method key) and the producer is identified by the combination
of the class key, instance key, and method key (the producer
key).

Embodiments of the invention that use keys may vary inthe
uniqueness of the keys used. For example, in one embodiment
of'the invention, each class key is unique, each instance key is
unique across all instances of all classes, and each method key
is unique across all methods of all classes. As another
example, in other embodiments of the invention, each class
has a unique key, each instance of a given class has a unique
key (across the class instances), and each method of a class
has a unique key (across the class methods); but instances of
different classes may have the same instance key, and meth-
ods of different classes may have the same method key; this
later approach will be used in the remainder of the document
by way of example and not limitation. For example, assume a
first class includes methods and has a key for each of these
methods that is unique within the first class, then the instances
of this class (which will each have a unique key as to each
other) have the same method keys associated with them. As
another example, assume a different second class includes
methods (be some, all, or none the same as the methods of the
first class) that have the same method keys as those used for
the first class; as such, an instance of this different class may
have associated with it the same method keys as associated
with an instance of the first class.

The use of keys allow for a variety of features, including: 1)
the tracking of each entity identified by a producer’s identi-
fiers (e.g., the tracking of each class, instance, and method);
2) several parent producers (unaware of their mutual exist-
ence) to connect to the same child producer based on their
producer dependency declarations (which specify producer
dependencies using the producer keys); etc. In one embodi-
ment of the invention, the instance key is an instance of a class
(InstanceKey) holding two elements: an instance key nature
indicating if the key identifier is a reference to the instance or
another object (such as a string), and a key identifier which
can either be a reference to the instance, or another object
(such as a string). The storing of an instance reference in the
instance key spares the programmer from inventing a name to
identify these instances.

Exemplary Relationships

In the context of the above discussion regarding a producer
being viewed as a set of multiple identifiers (with one iden-
tifier for each additional level of granularity specified), in one
embodiment of the invention the various supported relation-
ships between a producer and its children and parents are
those in which at least one such identifier is different between
a producer and its set of zero or more parent producers and

US 9,201,766 B2

17

one such identifier is different between a producer and each of
its set of zero or more child producers. By way of providing
some exemplary relationships, assume that a first producer is
instantiated, where the first producer is a first instance of a
first class and a first method of that first class, and assume that
the producer dependency declaration for that first method
identifies at run time a second producer as a child, then the
second producer may be: 1) the first instance of the first class
and a second method of that first class; 2) a second instance of
the first class and a second method of that first class; 3) a
second instance of the first class and the first method of the
first class; or 4) an instance of a second class and a method of
that second class. In such case, the first producer is dependent
onthe second producer—thus, representing an input to output
relationship of the first producer on the second producer.
Various relationships and combinations of those relationships
are described below for one embodiment of the invention that
uses an object-oriented language and in which a producer
identifies at least a class, instance, and method.

FIGS. 1B-1D illustrate exemplary relationships between a
given producer, its set of parent producers, and its set of child
producers according to one embodiment of the invention.
FIGS. 1B-1D each show the following: 1) a class definition
102A including methods 104A-C and producer dependency
declarations 106 A-C for each of those methods, respectively;
2) a class definition 102B including methods 104D-E and
producer dependency declarations 106D-E for each of those
methods, respectively; 3) a class definition 102C including
method 104F and producer dependency declaration 106F for
that method; 4) an instance 108A of the class 102A; 5) a
producer 110A that identifies the class 102A, the instance
108A, and the method 104A; and 6) a producer 112A.1 and a
producer 114A.1 respectively representing one of the set of
producers 112 and 114. Dashed lines with boxed letters on
them are used in FIGS. 1B-1D to illustrate the exemplary
relationships. Thus, the collection of dashed lines with a
boxed A on them represent one relationship. The relation-
ships in FIG. 1B are combinable with the relationships in FIG.
1C; as such, these combinations represent combinations of
relationships between parent producers 114A and child pro-
ducers 112A to producer 110A. Further, FIG. 1D illustrates
some additional exemplary combinations of relationships
between parent producers 114A and child producers 112A to
producer 110A.

FIG. 1B illustrates exemplary relationships between the
producer 110A and the parent producer 114A.1 according to
one embodiment of the invention. FIG. 1B additionally
includes an instance 108B. The set of producers 114 is iden-
tified by other producer dependency declarations of different
method(s) of the same class, different instances of the same
class, and/or method(s) of a different class; and thus, each of
the set of producers 114 may be: 1) of the same instance as the
producer 110A (instance 108A of class 102A) and a different
method associated with that instance (illustrated by the boxed
A on the dashed lines from the instance 108 A to the producer
114A.1 and from the method 104B to the producer 114A.1);
2) of a different instance of the class 102A and a different

10

15

20

25

30

35

45

50

18

method associated with that instance (illustrated by the boxed
B on the dashed lines from the class 102A to the instance
108B, from the instance 108B to the producer 114A.1, and
from the method 104B to the producer 114A.1); 3) of an
instance of a different class and a method associated with that
instance (illustrated by the boxed C on the dashed lines from
the class 102B to the instance 108B, from the instance 108B
to the producer 114A.1, and from the method 104D to the
producer 114A.1); or 4) of a different instance of class 102A
(than instance 108 A) and the same method (method 104A) of
that instance (e.g., with a contingent dependency—described
later herein) (illustrated by the boxed D on the dashed lines
from the class 102A to the instance 108B, from the instance
108B to the producer 114A.1, and from the method 104A to
the producer 114A.1); further, where there are multiple pro-
ducers in the set of producers 114, the producers 114 them-
selves may be part of the same instance of the class 102A,
different instances of the class 102A, an instance of a different
class, and/or a mixture of the above.

FIG. 1C illustrates exemplary relationships between the
producer 110A and the child producer 112A.1 according to
one embodiment of the invention. FIG. 1C additionally
includes an instance 108C. Each of the set of producers 112A
may be: 1) of the same instance as the producer 110A (in-
stance 108A of class 102A) and a different method associated
with that instance (illustrated by the boxed E on the dashed
lines from the instance 108 A to the producer 112A.1 and from
the method 104C to the producer 112A.1); 2) of a different
instance of the class 102A and a different method associated
with that instance (illustrated by the boxed F on the dashed
lines from the class 102A to the instance 108C, from the
instance 108C to the producer 112A.1, and from the method
104C to the producer 112A.1); 3) of an instance of a different
class and a method associated with that instance (illustrated
by the boxed G on the dashed lines from the class 102C to the
instance 108C, from the instance 108C to the producer
112A.1, and from the method 104F to the producer 112A.1);
or 4) of a different instance of class 102 A (than instance 108)
and the same method (method 104A) of that instance (e.g.,
with a contingent dependency described later herein) (illus-
trated by the boxed H on the dashed lines from the class 102A
to the instance 108C, from the instance 108C to the producer
112A.1, and from the method 104 A to the producer 112A.1).
Thus, each of the set of producers 112A may be of the same
instance as the producer 110A, of a different instance of the
class 102 A, or an instance of a different class; further, where
there are multiple producers in the set of producers 112A, the
producers 112 A themselves may be part of the same instance
of the class 102A, different instances of the class 102A, the
same instance of a different class, different instances of a
different class, and/or a mixture of the above.

FIG. 1D illustrates some additional exemplary combina-
tions of relationships of parent producers 114 and child pro-
ducers 112 to producer 110A according to one embodiment
of the invention. FIG. 1D additionally includes the instance
108B and the instance 108C. The combinations of FIG. 1D
are shown in Table 1 below:

TABLE 1
Boxed Dashed Lines For Parent Producer Dashed Lines For Child Producer 112A.1
Letter 114A.1 from from
I From instance 108A to producer From instance 108A to producer 112A.1

114A.1 and from method 104B to

and from method 104B to producer 112A.1

producer 114A.1

7 From instance 108A to producer
114A.1 and from method 104B to
producer 114A.1

From class 102A to instance 108C, from
instance 108C to producer 112A.1, and
from method 104B to producer 112A.1

19

US 9,201,766 B2

TABLE 1-continued

Boxed Dashed Lines For Parent Producer
Letter 114A.1 from

Dashed Lines For Child Producer 112A.1
from

From class 102A to instance 108B,
from instance 108B to producer
114A.1, and from method 104B to
producer 114A.1

From class 102B to instance 108B,
from instance 108B to producer
114A.1, and from method 104E to
producer 114A.1

From class 102B to instance 108B,
from instance 108B to producer
114A.1, and from method 104E to
producer 114A.1

From class 102A to instance 108B,
from instance 108B to producer
114A.1, and from method 104A to
producer 114A.1

From class 102A to instance 108B,
from instance 108B to producer
114A.1, and from method 104A to
producer 114A.1

From instance 108A to producer
114A.1 and from method 104B to
producer 114A.1

From class 102A to instance 108B,
from instance 108B to producer
114A.1, and from method 104A to
producer 114A.1

From class 102B to instance 108B,
from instance 108B to producer
114A.1, and from method 104D to

From instance 108A to producer 112A.1

and from method 104B to producer 112A.1

From class 102B to instance 108B, from
instance 108B to producer 112A.1, and
from method 104E to producer 112A.1

From class 102B to instance 108C, from
instance 108C to producer 112A.1, and
from method 104E to producer 112A.1

From class 102A to instance 108C, from
instance 108C to producer 112A.1, and
from method 104A to producer 112A.1

From class 102A to instance 108B, from
instance 108B to producer 112A.1, and
from method 104A to producer 112A.1

From class 102A to instance 108C, from
instance 108C to producer 112A.1, and
from method 104A to producer 112A.1
From class 102A to instance 108B, from
instance 108B to producer 112A.1, and
from method 104B to producer 112A.1

From class 102B to instance 108B, from
instance 108B to producer 112A.1, and
from method 104E to producer 112A.1

20

producer 114A.1

FIG. 1E illustrates that different instances of the same class
can have producers based on the same and/or different meth-
ods according to one embodiment of the invention. FIG. 1E
shows: 1) the class definition 102A including methods
104A-C and producer dependency declarations 106 A-C for
each ofthose methods, respectively; 2) the instance 108 A and
the instance 108B being of class 102A; 3) a producer 110A is
the method 104A of the instance 108A of the class 102A; 4)
a producer 110B is the method 104B of the instance 108 A of
the class 102A; 5) a producer 110C is the method 104A of the
instance 108B of the class 102A; and 6) a producer 110D is
the method 104C of the instance 108B of the class 102A. In
addition, FIG. 1D shows that: 1) the producer dependency
declaration 106 A for method 104 A identifies at run time the
child producers of both the producer 110A and the producer
110C; 2) the producer dependency declaration 106B for
method 104B identifies at run time the child producer of
producer 110B; and 3) the producer dependency declaration
106C for method 104C identifies at run time the child pro-
ducer of producer 110D.

Exemplary Runtimes

FIG. 2 is a block diagram illustrating the reusability of a
runtime with producer graph oriented programming support
according to one embodiment of the invention. In FIG. 2,
multiple object-oriented application programs (object-ori-
ented application code with producer dependency declara-
tions 210A-I) are run by the same runtime with producer
graph oriented programming support 220.

FIG. 3A is a block diagram illustrating a runtime with
producer graph oriented programming support according to
one embodiment of the invention. In FIG. 3A, a runtime with
producer graph oriented programming support 335 includes
an automated producer graph generation module 340 and a
producer graph execution module 345. In addition, the runt-

35

40

45

50

55

60

65

ime 335 is to execute object-oriented source code, and thus
includes additional modules not shown.

In addition, FIG. 3A shows producer dependency declara-
tions for methods in object-oriented source code 320, a cur-
rent set of one or more producers whose outputs are of interest
325 (also referred to here as the currently selected producers
of interest), and the outputs of source producers 330 (de-
scribed later herein). The automated producer graph genera-
tion module 340 receives the producer dependency declara-
tions 320 and the current set of producers of interest 325.

The automated producer graph generation module 340
attempts to discover, based on the producer dependency dec-
larations, child producers with outputs that contribute directly
and indirectly to the input of the currently selected producers
of interest (and in some embodiments of the invention that
support upwardly declared dependencies, parent producers),
and builds a set of one or more current graphs of producers
representing the dependency of these producers on each other
from the currently selected producers of interest, through any
discovered producers that are non-source producers, to those
of the discovered producers that are source producers. The
current producer graphs(s) are stored in the producer graph(s)
structure 380. While embodiments of the invention may store
and manipulate the producer graph(s) as a collection of
graphs, other embodiments of the invention stores and
manipulates the producer graph(s) as a collection of produc-
ers that are linked to each other to form graph(s) (as opposed
to a collection of graphs) to facilitate merging and splitting of
producer graphs. By way of example and not limitation,
embodiments of the invention which store and manipulate the
producer graph(s) as a collection of producers are described
herein.

The producer graph execution module 345 receives the
current producer graph(s) from the automated producer graph
generation module 340 and the outputs of source producers

US 9,201,766 B2

21

330, and executes the producers of the current producer graph
(s) to determine the current output of the currently selected
producers of interest. The producer graph execution module
345 caches the current outputs of the producers in the pro-
ducer graph(s) structure 380 as illustrated by the producer
output caching 384.

The caching of producer outputs of the producer graph
during execution allows for synchronization. For instance,
the appropriate time to execute a parent producer that is
dependent on multiple child producers is after all of the mul-
tiple child producers have been executed; in other words, it
would be wasteful (and, in some cases, not possible) to
execute the parent producer each time one of its child pro-
ducers completed execution. The caching of the producer
outputs allows for the execution of the parent producer to not
only be postponed until all its child producers have been
executed, it also allows for a determination of the appropriate
time for the execution of the parent producer—when all of the
child producers have been executed and their outputs have
been cached. Thus, the runtime makes this synchronization
decision for the programmer by checking the execution status
of'its child producers; in other words, such synchronization is
automated (the programmer need not include separate source
code that determines the appropriate time to identify an
instance and execute a given method associated with that
instance on that instance). By way of another example, where
several parent producers are dependent on the same child
producer as well as on other different child producers, the
appropriate time to execute each of the several parent produc-
ers is typically different; the runtime automatically deter-
mines the appropriate time to execute each of the several
parent producers depending on the availability of the outputs
of'its set of child producers.

As will be described in more detail later herein, since some
parts of a producer graph may not be currently discoverable
due to dynamic producer dependencies, the automated pro-
ducer graph generation module 340 “attempts” to discover
and build the entire producer graph, but may not initially be
able to complete the entire producer graph until some pro-
ducers are executed. As such, the producer graph execution
module 345 may invoke the automated producer graph gen-
eration module 340 with needed producer outputs during
execution of the current producer graph to complete any
unresolved remainders of the current producer graph (this is
illustrated in FIG. 3A by a dashed arrowed line from the
producer graph execution module 345 to the automated pro-
ducer graph generation module 340; a dashed arrowed line is
used because such support is optional)

FIG. 4A is a block diagram illustrating the discovery and
building of an exemplary producer graph according to one
embodiment of the invention. FIG. 4A shows that the current
set of producers of interest consists of producer 1. Based upon
producer 1 and its producer dependency declaration, pro-
ducer 2 and producer 3 are discovered. In other words, the
producer dependency declaration for producer 1 identifies
that the input to producer 1 requires execution of producer 2
and producer 3. As such, producer 1 is a dependent producer
(a producer that has one or more producer dependencies).
FIG. 4A also shows that while producer 3 is an independent
producer (a producer that has no producer dependencies, and
thus is a source producer), producer 2 is not. As aresult, based
upon the producer dependency declaration of producer 2,
producer 4 and producer 5 are discovered. In FIG. 2A, pro-
ducer 4 and producer 5 are independent producers (and thus,
source producers).

FIG. 4B is a block diagram illustrating the initial execution
of the producer graph of FIG. 4A according to one embodi-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

ment of the invention. In FIG. 4B, curved arrowed lines
illustrate the execution of one producer to generate an output
that is provided as the input to another producer. As shown in
FIG. 3A, the output of the source producers 330 are provided
to the producer graph execution module 345; in contrast, the
outputs of the dependent producers 1-2 are determined by
execution of those producers as shown in FIG. 4B. Thus, in
FIG. 4B, the following occurs: 1) the output of source pro-
ducer 4 and source producer 5 are provided to dependent
producer 2; 2) dependent producer 2 is executed; 3) the out-
puts of dependent producer 2 and source producer 3 are
provided to producer 1; and 4) producer 1 is executed and its
output is provided as the current output of interest. It is worth
noting that the producer graph of FIG. 4B is data driven in the
sense that data flows from one producer to another producer
up the graph.

Thus, the producer dependency declarations 320 bound the
possible producer graphs that may be generated; while the
currently selected set of producers of interest 325 identify the
beginning node(s) of the current producer graph to be gener-
ated. From these two, the automated producer graph genera-
tion module 340 discovers and builds the producer graph. The
discovery and building is automated in that the automated
producer graph generation module 340 is not provided the
producer graph (e.g., it does not need to be manually identi-
fied by a programmer) or even a list of the producers that will
be in the producer graph. Rather, the automated producer
graph generation module 340 parses the producer depen-
dency declaration(s) of the current selected set of producers
of interest to discover their child producers (and in some
embodiments of the invention that support upwardly declared
dependencies, parent producers), then parses the producer
dependency declarations of those discovered producers, and
so on down to the source producers (in some embodiments of
the invention described later herein, this may be done with the
assistance of the producer graph execution module 345). In
the case where the producer graph is a tree, a currently
selected producer of interest will typically be the root node,
and the producer dependency declarations will be parsed until
the leaf nodes (source producers) are discovered.

Overridden Producers and Incremental Execution

FIG. 3B is a block diagram illustrating a runtime with
producer graph oriented programming support that also sup-
ports incremental execution and overridden producer outputs
according to one embodiment of the invention. It should be
understood that incremental execution and overridden pro-
ducer outputs are each independent optional features, and
thus different embodiments of the invention may implement
one or both.

In FIG. 3B, a runtime with producer graph oriented pro-
gramming support 360 includes an automated producer graph
generation module 365, a producer graph execution module
370, and an override producer output module 390. The runt-
ime 360 is to execute object-oriented source code, and thus
includes additional modules not shown.

In addition, FIG. 3B shows the producer dependency dec-
larations for methods in object-oriented source code 320, the
current set of one or more producers whose outputs are of
interest 325 (also referred to herein as the currently selected
producers of interest), and the output of source producers
350. The output of source producers 350 includes the outputs
of independent producers set in the source code 352 (e.g.,
constants, default values, etc.) and the currently overridden
producer outputs 354 (the outputs of the independent produc-
ers and/or dependent producers whose outputs are currently
overridden).

US 9,201,766 B2

23

In some embodiments of the invention, the outputs of pro-
ducers may be explicitly overridden with a currently provided
value (i.e., rather than executing a producer to determine its
output value based on its current inputs, the output value for
the producer is explicitly provided). In addition to any inde-
pendent producers of a producer graph, the source producers
of'a producer graph include any currently overridden produc-
ers.

The override producer output module 390 receives the
overridden producer outputs 354 (which identify which pro-
ducers are being overridden and what output values they are
being overridden with). In one embodiment of the invention,
producers can be classified as property producers or method
producers. Property producers are those based on property
methods (e.g., get and set). Method producers are those based
on non-property methods. The override producer output mod-
ule 390 includes an override property producer output module
392 for overridden property producers and an override
method producer output module 394 for overridden method
producers. The override property producer output module
392 causes the overridden value to be stored in the producer
output caching 384 and in the data of the instance, whereas the
override method producer output module 394 causes the over-
ridden value to be stored in the producer output caching 384.
Depending on the embodiment of the invention, this causa-
tion may be direct or indirect. FIG. 3B illustrates an indirect
causation through the use of an override log 396 which col-
lects the output of the override producer output module 390
and which is consumed by the producer graph execution
module 370. For optimization purposes, the override log 396
allows for the delaying of overrides in order to collect mul-
tiple overrides for batch processing.

Similar to the automated producer graph generation mod-
ule 340, the automated producer graph generation module
365: 1) receives the producer dependency declarations 320
and the current set of producers of interest 325; and 2)
attempts to discover, based on the producer dependency dec-
larations, child producers with outputs that contribute directly
and indirectly to the input of the currently selected producers
of interest (and in some embodiments of the invention that
support upwardly declared dependencies, parent producers),
and builds a set of one or more current graphs of producers
representing the input dependency of these producers on each
other from the currently selected producers of interest,
through any discovered non-source producers, to those of the
discovered producers that are source producers (independent
producers and currently overridden producers). The producer
graphs(s) are stored in the producer graph(s) structure 380.

Similar to the producer graph execution module 345, the
producer graph execution module 370 receives the current
producer graph from the automated graph module 365 and the
outputs of source producers 350, and executes the producers
of'the current producer graph to determine the current output
of the currently selected producers of interest. The producer
graph execution module 370 caches the current outputs of the
producers in the producer graph structure 380 as illustrated by
the producer output caching 384.

As previously described, the caching of producer outputs
during execution allows for synchronization (e.g., separate
source code need not be written to determine when producer
2 of FIG. 4B should be executed, but rather the runtime makes
this synchronization decision for the programmer by check-
ing the availability of the needed outputs in the producer
output caching 384; in other words, such synchronization is
automated). In addition, this producer output caching 384 is
used for incremental execution. More specifically, after a
producer graph has been initially generated and executed, the

10

15

20

25

30

35

40

45

50

55

60

65

24

overriding of a producer in the current producer graph
requires some level of reexecution. While some embodiments
of'the invention simply reexecute the entire graph, alternative
embodiments of the invention support incremental execution
(reexecuting only those parts of the producer graph that are
affected by the override). Some exemplary embodiments that
support incremental execution use incremental execution
marking 382 in the producer graph(s) structure 380 to help
determine which producers require reexecution. Thus, main-
taining the producer graph(s) refers to modifying the links of
the producer graph(s) as necessary across multiple executions
to keep them current (up-to-date), whereas incremental
execution refers to both maintaining the producer graph(s)
and using the current (up-to-date) producer graph(s) to reex-
ecute only those parts of the producer graph(s) that are
affected by an override.

Similar to FIG. 3A, there is a dashed arrowed line from the
producer graph execution module 370 to the automated pro-
ducer graph execution module 365 to represent optional sup-
port for dynamic dependencies. It should be noted that
dynamic dependencies may change during reexecution of a
producer graph.

FIG. 4C is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B according to one
embodiment of the invention. In FIG. 4C, the output of pro-
ducer 5 has been explicitly modified, but the outputs of pro-
ducer 3 and producer 4 have not. Based upon the tracking of
output to input dependencies in the producer graph and that
only the output of producer 5 has been explicitly modified, it
is determined that only producer 2 and producer 1 are affected
by this modification. As a result, the determination of an
updated output of producer 1 requires only the reexecution of
producer 2 and producer 1 with the new output of producer 5
and the prior outputs of producer 4 and producer 3. This
partial reexecution of the producer graph is illustrated in FI1G.
4Cby curved arrowed lines from producer 5 to producer 2 and
from producer 2 to producer 1, but not from producer 4 to
producer 2 or from producer 3 to producer 1. The lack of
curved arrowed lines from producer 4 to producer 2 and from
producer 3 to producer 1 are not to indicate that the outputs of
producer 3 and producer 4 are not needed, but rather that
producer 3 and producer 4 need not be reexecuted if their prior
output is available. (e.g., cached from the prior execution of
the producer graph).

The relatively simple example of FIG. 4C illustrates that
there can be a savings in processing resources as a result of
incremental execution. Such savings depend on a number of
factors (e.g., the number of producers that do not need to be
reexecuted, the amount of processing those producers would
have required, etc.). While one embodiment of the invention
is illustrated that performs incremental execution, alternative
embodiments may be implemented differently (e.g., an alter-
native embodiment may reexecute all producers responsive to
a modification).

FIG. 4D is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden according to one embodiment
of'the invention. In FIG. 4D, the output of producer 2 has been
explicitly modified, but the output of producer 3 has not.
Based upon the producer graph and that only the output of
producer 2 has been explicitly modified, it is determined that
only producer 1 is affected by this modification. As a result,
the determination of an updated output of producer 1 requires
only the reexecution of producer 1 with the overridden output
of producer 2 and the prior output of producer 3. This partial
reexecution of the producer graph is illustrated in FIG. 4D by

US 9,201,766 B2

25

a curved arrowed line from producer 2 to producer 1, but not
from producer 4 and 5 to producer 2 or from producer 3 to
producer 1.

FIG. 4E is a block diagram illustrating the incremental
execution of the producer graph of FIG. 4B after dependent
producer 2 has been overridden and independent source pro-
ducer 3 has been modified according to one embodiment of
the invention. Based upon the producer graph and that only
the outputs of producer 2 and producer 3 have been modified,
it is determined that only producer 1 is affected by this modi-
fication. As a result, the determination of an updated output of
producer 1 requires only the reexecution of producer 1 with
the overridden output of producer 2 and the modified output
of producer 3. This partial reexecution of the producer graph
is illustrated in FIG. 4E by a curved arrowed line from pro-
ducers 2 and 3 to producer 1, but not from producers 4 and 5
to producer 2.

While one embodiment of the invention that supports over-
riding producer outputs also supports unoverriding producer
outputs, alternative embodiments of the invention do not.
While one embodiment of the invention that supports unover-
riding producers leaves an overridden producer overridden
until it is specifically unoverridden, alternative embodiments
of the invention may be implemented differently (e.g.,
unoverriding an overridden producer when one of its progeny
is overridden).

Producer Graph Building and Execution

Different embodiments of the invention may be imple-
mented to discover and build out a producer graph to different
extents (e.g., build the producer graph until all paths from the
root node end at independent producers (in which case, the
end nodes of a producer graph are independent producers,
with the possibility of any overridden producers being inter-
mediate nodes); build the producer graph out until each path
from the root node ends in an overridden producer or an
independent producer, whichever is reached first (in which
case, each end node of a producer graph is either an indepen-
dent producer or an overridden producer)).

“Execution start producers” refers to the producers of a
producer graph from which a given execution of the producer
graph begins. For an initial execution of a producer graph,
different embodiments may start from different producers
(e.g., in embodiments of the invention that build the producer
graph until all paths from the root node end at independent
producers, execution may start from the end nodes (which
would be the independent producers), from the source pro-
ducers (which would include the independent producer nodes
and any overridden producer nodes), from a subset of the
source producers consisting of the combination of any inde-
pendent producers with at least one path between them and
the root producer that does not include an overridden pro-
ducer and any overridden producers, or from a subset of the
source producers consisting of the combination of any over-
ridden producers without any descendents that are overridden
and any independent producers with at least one path between
them and the root producer that does not include an overrid-
den producer; in embodiments of the invention where the
producer graph under overridden producers is not built if and
until such a producer is un-overridden, execution may start
from the end nodes (which may be independent producers
and/or overridden producers), etc).

For subsequent executions of a producer graph, different
embodiments may start from different producers (e.g., from
the independent producers of the producer graph (e.g., in
embodiments of the invention that do not support incremental
execution); from the source producers of the producer graph
(e.g., in embodiments of the invention that do not support

20

40

45

26

incremental execution); from a subset of the source producers
that consists of those source producers that have been over-
ridden and/or added since the last execution (e.g., in embodi-
ments of the invention that do support incremental execu-
tion); of the source producers that have been overridden and/
oradded since the last execution, from the combination of any
such overridden producers without any descendents that are
overridden and any such added producers with at least one
path between them and the root producer that does not include
anoverridden producer (e.g., inembodiments of the invention
that do support incremental execution); etc). By way of
example and not limitation, embodiments of the invention
that perform the following will be described below: 1) do not
build the producer graph under overridden producers if and
until such a producer is un-overridden; 2) for an initial execu-
tion of a producer graph, start execution from the end nodes
(which may be independent producers and/or overridden pro-
ducers); 3) implements incremental execution; and 4) for
subsequent executions of a producer graph, start execution
from a subset of the source producers that consists of those
source producers that have been overridden and/or added
since the last execution.

With regard to the above concept of execution start pro-
ducers, the processing flow of execution of the producer
graph also differs between different embodiments. For
example, in one embodiment of the invention, the ancestry of
the execution start producers are determined and placed in a
collection, the execution start producers are executed, and the
collection is iteratively scanned for producers for whom all
dependencies have been executed—eventually the root nodes
are reached. As another example, in one embodiment of the
invention, the execution start producers are executed, the
parents of the execution start producers are identified, those
parents are executed, and their parents are identified and
executed, and so on. The later embodiment of the invention is
used below by way of example, and not limitation.

Exemplary Types of Dependencies

Exemplary Dynamic Producer Dependencies

A dynamic producer dependency is a producer dependency
that can change during run time. It should be understood that
the criteria for resolving the producer dependency is present
in the source code, and thus the producers to which the pro-
ducer dependency may be resolved are limited. With refer-
ence to FIG. 3A, the dashed arrowed line from the producer
graph execution module 345 to the automated producer graph
generation module 340 represents support for the execution
of one or more producers in the current producer graph that
are necessary to discover and build the entire current producer
graph. In other words, an embodiment of the invention that
supports dynamic producer dependencies may iterate
between the automated producer graph generation module
340 and the producer graph execution module 345 until the
entire producer graph is discovered, built, resolved, and
executed (that is, iterate between: 1) invoking the automated
producer graph generation module to discover and build those
parts of the current producer graph that can be resolved at that
time; and 2) invoking the producer graph execution module to
execute producers of the current producer graph). In this
sense, discovering refers to the accessing of the producer
dependency declarations and determining the producers they
identify; building refers to instantiating the producers and
adding them to the producer graph; and resolving refers to
determining currently unresolved dynamic producer depen-
dencies.

FIG. 5A is a block diagram illustrating the discovery and
building of an exemplary producer graph including an unre-
solved dependency according to one embodiment of the

US 9,201,766 B2

27

invention. FIG. 5A shows the current set of producers of
interest consisting of producer 1. Based upon producer 1 and
its producer dependency declaration, producer 2 and pro-
ducer 3 are discovered. In other words, the dependency dec-
laration for producer 1 identifies that producer 1 requires as
inputs the output of producer 2 and producer 3. FIG. 5A also
shows that while producer 3 is an independent producer (and
thus, a source producer), producer 2 is not. As a result, based
upon the dependency declaration of producer 2, producer 4
and producer 5 are discovered. Further, FIG. 5A shows that
while producer 4 is an independent producer (and thus, a
source producer), producer 5 is not. As a result, based upon
the dependency declaration of producer 5, producer 6 and a
currently unresolved dependency are discovered. FIG. 5A
also shows that the currently unresolved dependency may be
to producer 7A and/or producer 7B.

FIG. 5B is a block diagram illustrating the initial execution
of the producer graph of FIG. SA and the resolution of the
unresolved dependency according to one embodiment of the
invention. FI1G. 5B illustrates the producer graph of FIG. 5A
with curved arrowed lines showing execution of the produc-
ers and provision of their outputs to dependent parent pro-
ducers. In addition, FIG. 5B shows that the unresolved depen-
dency of producer 5 is resolved as a dependency on producer
7A, and that producer 7A is an independent producer.

FIG. 5C is a block diagram illustrating the initial execution
of'the producer graph of FIG. 5A and/or the reexecution of the
producer graph of FIG. 5B according to one embodiment of
the invention. FIG. 5C illustrates the producer graph of FIG.
5A with curved arrowed lines showing execution of the pro-
ducers and provision of their outputs to dependent parent
producers. In addition, FIG. 5C shows that the unresolved
dependency of producer 5 is resolved as a dependency on
producer 7B and that producer 7B is a dependent producer. As
a result, based upon the dependency declaration of producer
7B, producer 8 is discovered. Producer 8 is an independent
producer (and thus, is a source producer). Assuming that F1G.
5C represents the initial execution of the producer graph of
FIG. 5A, all of the curved arrowed lines in FIG. 5C would be
employed. However, assuming that FIG. 5C represents the
reexecution of the producer graph of FIG. 5B, the reexecution
results in the dynamic dependency being resolved differently
(a switch from producer 5 being dependent on producer 7A to
producer 7B). Further, if the reexecution is performed with-
out incremental execution, then all of the curved arrowed
lines in FIG. 5C would be employed; however, if incremental
execution was used, only the non-dashed curved arrowed
lines would be employed (producer 8 to producer 7B, pro-
ducer 7B to producer 5, producer 5 to producer 2, and pro-
ducer 2 to producer 1). It should also be understood that the
dynamic change in dependency illustrated in FIG. 5C is
exemplary, and thus any number of different situations could
arise (e.g., the dynamic change may never occur; producer 5
could have first been dependent on producer 7B and then
changed to producer 7A; producer 5 could have first been
dependent on producer 7B and no dynamic change ever
occurs; producer 5 could be found to be dependent on both
producer 7A and producer 7B as illustrated in FIG. 5D; etc.)
While different embodiments may resolve dynamic producer
dependencies in different ways, some examples are provided
later herein.

Thus, automated reexecution of a producer graph is not
limited to the producer being modified and its direct parent
being reexecuted; rather a change is automatically rippled
through the producer graph by the runtime, affecting any
appropriate producers and dependencies, because the pro-
ducer graphs are maintained (and incremental execution is

10

15

20

25

30

35

40

45

50

55

60

65

28

used where supported). As such, changes cause any necessary
additional discovery, building, resolving, and executing.
Thus, the reexecution of a producer graph is automated in the
sense that a user/programmer need not determine which pro-
ducers of'the producer graph are affected and possibly manu-
ally correct the graph.

Static Producer Dependencies

A static dependency is one that cannot change during run
time. Thus, in an embodiment of the invention that supports
contingent and subscription dynamic dependencies (de-
scribed later herein), a non-contingent, non-subscription
dependency is a static dependency. The exemplary producer
graph of FIG. 4A illustrates a producer graph of static depen-
dencies.

Producer Graph Shapes

Since a producer is at least an instance and a method
associated with that instance, a producer graph is a graph
representing instances and methods associated with those
instances—and thus producer graphs are at least instance and
method centric. In embodiments of the invention in which a
producer is at least a class, instance, and method, producer
graphs are at least class, instance and method centric.

It should be understood that a producer graph may take a
variety of different shapes (e.g., a single chain of producers, a
tree, etc.). The exemplary producer graph of FIG. 5B is a tree
with a root node of producer 1, from which there are two
branches—one to each of producer 2 and producer 3. Where
producer 3 is a leaf node, producer 2 has two branches extend-
ing from it—one to each of producer 4 and producer 5. Pro-
ducer 5 has two branches extending from it—one to each of
producer 6 and producer 7A. The exemplary producer graph
of FIG. 5B is said to be multilevel, with level 1 including the
rood node producer 1, with level 2 including producer 2 and
producer 3, with level 3 including producer 4 and producer 5,
with level 4 including producer 6 and producer 7A (in FIG.
5C, level 4 includes producer 7B, and level 5 includes pro-
ducer 8). When considering the branch from producer 1 with
producer 2, the first producer of the branch is producer 2 and
the last producers of the branch are producer 4, producer 6,
and producer 7A in FIG. 5B.

While FIG. 5B illustrates a producer graph in which the
current set of producers of interest includes a single producer,
embodiments of the invention that support more than one
current producer of interest would discover and build pro-
ducer graphs for each. It should be understood that where
there are simultaneously multiple producers of interest, the
resulting producer graphs may be independent or may inter-
sect. Where producer graphs intersect, embodiments of the
invention may be implemented to: 1) duplicate producers to
maintain separate producer graphs; or 2) avoid such duplica-
tion and maintain intersecting producer graphs. It should also
be understood that such intersecting producer graphs may
include a producer graph that is a subset of another producer
graph. For instance, if producer 5 was included with producer
1 in the current set of producers of interest, then there would
be a first producer graph with a root node of producer 5 and a
second producer graph with a root node of producer 1, where
the second producer graph includes the first producer graph.
If, for instance, producer 7B was included with producer 1
and producer 5 in the current set of producers of interest, there
would be a third producer graph, separate from the first and
second producer graph, with a root node of producer 7B in
FIG. 5B. Further, if the dynamic dependency of producer 5
changed from producer 7A to producer 7B (FIG. 5C), then the
change would result in the third producer graph becoming a
subset of the second producer graph remaining, and the sec-
ond producer graph becoming a subset of the first producer

US 9,201,766 B2

29

graph. As previously stated, while embodiments of the inven-
tion may store and manipulate the producer graph(s) as a
collection of graphs, other embodiments of the invention
stores and manipulates the producer graph(s) as a collection
of producers that are linked to each other to form graph(s) (as
opposed to a collection of graphs) to facilitate merging and
splitting of producer graphs. By way of example and not
limitation, embodiments of the invention which store and
manipulate the producer graph(s) as a collection of producers
are described herein.

Exemplary Execution Flow

FIG. 6 is a flow diagram of a logical execution flow of a
runtime client and its relationship to a runtime with producer
graph oriented programming support according to one
embodiment of the invention. In FIG. 6, dashed dividing line
600 separates the logical execution flow of a runtime client
610 from the runtime with producer graph oriented program-
ming support 640.

The logical execution flow of the runtime client 610
includes blocks 615, 620, 625, and 630, while the runtime
with producer graph oriented support 640 includes blocks
645, 650, 660, and optionally 655. A solid arrowed line rep-
resents a direct causal relationship from block 630 to block
660. In contrast, dotted arrowed lines illustrate a causal rela-
tionship from blocks 615 and 625 in the logical execution
flow of the runtime client 610 to blocks 645 and 650 in the
runtime with producer graph oriented support 640, respec-
tively; depending on the embodiment of the invention, this
causal relationship may be direct or indirect. For example,
FIG. 6 illustrates an optional indirect causation through the
use of a command log 665 in a dashed oval on the runtime
with producer graph oriented support 640 side of the dashed
line 600. The command log 665 collects commands resulting
from blocks 615 and 625 of the logical execution flow of the
runtime client 610; and the command log 655 is consumed,
responsive to block 630, by processing block 660. Thus, the
command log 665 allows for the delaying of commands in
order to collect multiple ones together and batch process them
for optimization purposes. Thus, the command log 665 is
similar to the override log 396 of FIG. 3B, and would actually
include the override log 396 in some embodiments of the
invention.

In block 615, the set of one or more producers of interest
are determined as the current set of producers of interest and
control passes to block 620. Responsive to the causal rela-
tionship between block 615 and block 645, block 645 shows
that the current set of producers of interest are instantiated and
that an attempt is made to discover, build, and resolve (if
dynamic dependencies are supported and one or more are
discovered in the producer graph) the producer graph(s) for
each, including instantiating any instances and producers
thereof as necessary, based on the producer dependency dec-
larations in the runtime client 610. With reference to FIGS.
3 A and 3B, the automated producer graph generation module
340 and 365 are invoked, respectively.

In block 620, it is determined if there are any producer
output overrides. If so, control passes to block 625; otherwise,
control passes to block 630.

In block 625, one or more producer output overrides are
received for a set of one or more producers and control passes
to block 630. Responsive to the causal relationship between
block 625 and block 650, block 650 shows that the current set
of'overridden producers are instantiated (if not already instan-
tiated in block 645), their outputs are modified, and they are
tracked. An overridden producer may have already been
instantiated because it was already discovered to be part of the
producer graph(s) in block 645. However, an overridden pro-

10

15

20

25

30

35

40

45

50

55

60

65

30

ducer may not already be discovered in block 645 because of
an unresolved dynamic dependency. As such, this overridden
producer is instantiated and overridden with the expectation
that it may be added to the producer graph(s) when dynamic
dependencies are resolved. Also, as previously indicated, the
override log 396 of FIG. 3B, if implemented, exists between
block 625 and block 650 and is part of the command log 665.
Further, the set of overridden producers is tracked in some
embodiments of the invention that support incremental
execution. While in embodiments of the invention that sup-
port the override log 396/command log 665 the tracking is
partofthe log, in alternative embodiments of the invention the
tracking is separately performed in block 650 with a different
mechanism.

In block 630, the producer graph execution module is
invoked and control optionally returns to block 615 and/or
block 625. Responsive to the causal relationship between
block 630 and block 660, block 660 shows that the current
producer graph(s) are walked and any producers that require
execution are executed based on the tracking Various tech-
niques have been previously discussed for executing the pro-
ducers of the producer graph and are applicable here. With
reference to FIGS. 3A and 3B, the producer graph execution
module 345 and 370 are invoked, respectively. In addition, in
embodiments of the invention in which the command log 665
is implemented, the causal relationship includes consuming
the command log 665 and performing the processing blocks
645 and 650 prior to block 660. Further, in embodiments of
the invention that support the possibility of unresolved depen-
dencies, control flows from block 660 to block 655 when
necessary.

In block 655, an attempt is made to resolve the unresolved
dependencies and discover and build the remainder of the
producer graph(s), including instantiating any instances and
producers thereof. From block 655, control flows back to
block 660.

Exemplary Forms of Producer Dependency Declarations

FIGS. 7A-F illustrates some exemplary forms for producer
dependency declarations according to embodiments of the
invention. While FIGS. 7A-F illustrate embodiments that
support argument, field, and sequencing dependencies, it
should be understood that different embodiments may sup-
port only one or two of the three dependency forms. In the
embodiments of the invention shown in FIGS. 7A-F, a pro-
ducer dependency declaration is made up of a producer
dependency declaration statement, and optionally explicit
producer dependency declaration code. A non-shortcut
declared producer dependency is one in which explicit pro-
ducer dependency declaration code is used, whereas a short-
cut declared producer dependency is one in which no explicit
producer dependency declaration code is used (rather, the
runtime does not use producer dependency declaration code
and/or implements it on the fly based on information in the
producer dependency declaration statement).

Different embodiments of the invention may use different
syntaxes for declaring producer dependencies. For example,
different embodiments of the invention may include different
syntaxes for use in producer dependency declaration state-
ments that strongly constrain, weakly constrain, and/or do not
constrain the type of producer dependency that may be cre-
ated. A strongly constrained producer dependency is one for
which a syntax is used in the producer dependency declara-
tion statement that substantially limits the type of producer
dependency that may be created; A weakly constrained pro-
ducer dependency is one for which a syntax is used in the
producer dependency declaration statement that is less limit-
ing of the type of producer dependency that may be created;

US 9,201,766 B2

31

and an unconstrained producer dependency is one for which
a syntax is used in the producer dependency declaration state-
ment that does not limit the type of producer dependency that
may be created.

By way of example, and not limitation, embodiments of the
invention described below that include the following: 1) a
syntax for a strongly constrained producer dependency for
arguments (ArgumentDependency=strongly constrained
downwardly declared argument [static or dynamic, and if
dynamic, contingent and/or absorbing subscription] depen-
dency); 2) a syntax for a strongly constrained producer depen-
dency for fields (FieldDependency=Strongly constrained
downwardly declared field [static or dynamic, and if
dynamic, contingent and/or absorbing subscription] depen-
dency); 3) a syntax for a strongly constrained producer depen-
dency for sequencing dependencies
(SequencingDependency=Strongly constrained downwardly
declared sequencing [static or dynamic, and if dynamic, con-
tingent and/or sticky subscription] dependency); 4) a syntax
for a weakly constrained upwardly declared producer depen-
dency for argument, field, or sequencing dependencies
(UpwardDependency=Weakly ~ constrained upwardly
declared field, argument, or sequencing [static or dynamic,
and if dynamic, contingent| dependency); and 5) a syntax for
a weakly constrained producer dependency
(WeaklyConstrainedDependency=either a) downwardly
declared sequencing only [static or dynamic, and if dynamic,
contingent and/or sticky subscription] dependency; or b)
upwardly declared [argument, field, or sequencing] [static or
dynamic, and if dynamic, contingent| dependency). It should
be understood that while some embodiments of the invention
support a syntax for the producer dependency declaration
statement that distinguishes downwardly declared argument
dependencies, downwardly declared field dependencies,
upwardly declared dependencies (that can return upwardly
declared argument, field, or sequencing dependencies), and
weakly constrained dependencies (that can return down-
wardly declared sequencing dependencies, upwardly
declared argument, field, or sequencing dependencies), alter-
native embodiments of the invention may adopt a different
syntax (e.g., have a syntax that has all dependencies be uncon-
strained dependencies with dependency determination pro-
ducers that can return any supported dependencies (down-
wardly and upwardly declared argument, field, and
sequencing dependencies); have a syntax distinguish all sup-
ported dependencies; have a syntax that distinguishes down-
wardly and upwardly declared argument and field dependen-
cies and that distinguishes a weakly constrained dependency
that can only return upwardly and downwardly declared
sequencing dependencies; a syntax that distinguishes down-
wardly declared argument and field dependencies and that
distinguishes upwardly declared dependencies that can return
only upwardly declared sequencing dependencies; a syntax
that distinguishes downwardly declared argument, field, and
sequencing dependencies (sticky subscriptions and upwardly
declared dependencies are not supported); etc.).

It should be understood that the syntax of the producer
dependency declaration statement does not necessarily
equate to the producer dependency (e.g., the link) created in
the producer graph (e.g., ArgumentDependency creates an
argument dependency; but an UpwardDependency may cre-
ate an argument, field, or sequencing dependency). As such,
where appropriate for understanding, a space between a
qualifier (e.g., argument, field, or sequencing) and the word
“dependency” is used to refer to the dependency created by
the runtime, while lack ofa space is used to refer to the syntax.

20

40

45

50

55

32

FIG. 7A illustrates pseudo code of a producer dependency
declaration for a method using shortcut declared dependen-
cies according to one embodiment of the invention; while
FIG. 7B is ablock diagram of exemplary producers according
to one embodiment of the invention. FIG. 7A shows: 1) a
producer dependency declaration statement 705 including
ArgumentDependencies 1-N, FieldDependencies 1-M,
SequencingDependencies 1-L, UpwardDependencies 1-P,
and WeaklyConstrainedDependencies 1-Q; and 2) a method
alpha 710 having arguments 1-N from the producer depen-
dency declaration statement 705. In one embodiment of the
invention, the arguments of a producer dependency declara-
tion statement are numbered to provide an argument ID for
each for tracking purposes FIG. 7B shows a producer 720
having child dependencies to the following: 1) producer 725
for argument ID 1; 2) producer 730 for argument ID N; 3)
producers 740-745 for FieldDependencies 1-M; 4) producers
746-747 for SequencingDependencies 1-L; and 5) producer
748-749 for UpwardDependencies 1-P (note, WeaklyCon-
strainedDependencies 1 . . . Q are not shown, but will be
described in greater detail with reference to FIG. 7G). Thus,
the arguments of the producer dependency declaration state-
ment 705 correspond to the arguments of the method alpha
710, and the argument IDs of the arguments in the producer
dependency declaration statement 705 are tracked with
regard to the child producers they identify.

FIG. 7C illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut declared
dependency, and illustrates a block diagram of exemplary
producers according to one embodiment of the invention.
FIG. 7C shows the producer dependency declaration state-
ment 705 and the method alpha 710 of FIG. 7A, as well as the
producers 720 and 725 from FIG. 7B. In addition, FIG. 7C
includes producer dependency declaration code 715 associ-
ated with ArgumentDependency 1. During run time, the runt-
ime accesses and executes the producer dependency declara-
tion code 715 responsive to ArgumentDependency 1 of the
producer dependency declaration statement 705. Execution
of the producer dependency declaration code 715 returns the
producer 725 as the producer dependency for ArgumentDe-
pendency 1. Thus, FIG. 7C illustrates embodiments of the
invention in which producer dependency declaration code
715 may be part of a method (other than method alpha 710),
but is not part of a producer.

FIG. 7D illustrates pseudo code of a producer dependency
declaration for a method using a non-shortcut declared
dependency according to one embodiment of the invention;
while FIG. 7E is a block diagram of exemplary producers
according to one embodiment of the invention. FIG. 7D
shows the producer dependency declaration statement 705
and the method alpha 710 of FIG. 7A, while FIG. 7E shows
the producers 720 and 725 from FIG. 7B. In addition, FIG. 7D
includes: 1) a producer dependency declaration statement
750; and 2) a method beta 755 including producer depen-
dency declaration code 760. FIG. 7D also shows that argu-
ment dependency 1 of the producer dependency declaration
statement 705 identifies a producer (shown in FIG. 7E as
producer 765) based on the method beta 755 that will return
the dependency for argument dependency 1. During run time,
the runtime, responsive to argument dependency 1 of the
producer dependency declaration statement 705, executes the
producer 765 to return identification that the producer depen-
dency for argument dependency 1 is producer 725. As such,
producer 765 is referred to as a dependency determination
producer (its output is producer dependency—and thus, is
returned using a class/instance that is monitored for special
treatment (manipulation of the producer graph(s)) by the

US 9,201,766 B2

33

runtime with producer graph oriented programming support),
whereas producer 725 is referred to as a standard producer (its
output, if any, is not directly processed by the runtime to
manipulate a producer graph; but its output, if any, may be
consumed by a parent producer (be it a dependency determi-
nation producer or another standard producer) and/or pro-
vided as the output of the producer graph (if the standard
producer is a producer of interest, and thus a root node).

Thus, FIGS. 7D-E illustrate embodiments of the invention
in which producer dependency declaration code 715 is part of
another producer—referred to as a dependency determination
producer. While in FIGS. 7D-E the object-oriented source
code includes explicit producer dependency declaration code
in methods from which dependency determination producers
are instantiated at run time by the runtime for non-shortcut
declared dependencies, alternative embodiments of the
invention additionally or instead implement the runtime to
include generic producer dependency declaration code that it
invokes as one or more generic dependency determination
producers on the fly for shortcut declared dependencies. Also,
while FIGS. 7C-E are illustrated with reference to Argument-
Dependencies, the techniques illustrated are applicable to the
other types of downwardly declared dependencies. Further,
FIGS. 7F-G illustrate the use of a dependency determination
producer for an UpwardDependency and a WeaklyCon-
strainedDependency.

FIG. 7F is a block diagram of an exemplary dependency
through use of an UpwardDependency with a dependency
determination producer according to one embodiment of the
invention. FIG. 7F shows the producer 720 having sequenc-
ing producer dependency to a dependency determination pro-
ducer 772. The dependency determination producer may
return a non-subscription upwardly declared argument, field,
or sequencing dependency of the parent producer 748 on the
producer 720. Further, such a dependency determination pro-
ducer may implement a dynamic dependency (e.g., a contin-
gent dependency that selects between the above depending on
data values, including between different argument IDs, as
described later herein). While some embodiments of the
invention support all of these possibilities, alternative
embodiments of the invention support only a subset (e.g.,
only non-subscription upwardly declared sequencing depen-
dencies).

FIG. 7G is a block diagram of possible exemplary depen-
dencies through use of a WeaklyConstrainedDependency
with a dependency determination producer according to one
embodiment of the invention. FIG. 7G shows the producer
720 having sequencing producer dependency to a depen-
dency determination producer 775. In some embodiments of
the invention, the dependency determination producer may
return any of the following: 1) a non-subscription down-
wardly declared sequencing dependency on a child producer
780; 2) a non-subscription upwardly declared argument,
field, or sequencing dependency of a parent producer 785 on
the producer 720; and 3) a sticky subscription (described later
herein). Further, such a dependency determination producer
may implement a dynamic dependency (e.g., a contingent
dependency that selects between the above depending on data
values, including between different argument IDs, as
described later herein). While some embodiments of the
invention support all of these possibilities, alternative
embodiments of the invention support only a subset (e.g.,
only non-subscription upwardly declared sequencing depen-
dencies).

As previously indicated, sequencing dependencies may be
used for a variety of purposes, including ensuring the order of
execution between producers that modify data in a manner of

25

40

45

34

which the runtime is not aware and producers that consume
that data (a child producer may write its outputs in a way that
requires the method of the parent producer to include code to
access that output (e.g., a method that impacts the environ-
ment by affecting an output that is not the regular producer
output and, as such, that is not detected by the runtime—such
as a method that sets a global variable, that sets a field in an
instance which is not the producer output, that impacts an
external data source, etc.)), etc.

Different embodiments may support one or more ways for
declaring producer dependencies with respect to property
producers. Specifically, in some embodiments of the inven-
tion, producers that read a field should be dependent on the
get property producer, while the get property producer should
be dependent on any producers that set the field for which that
get property method is responsible. One technique of han-
dling this situation that may be used in embodiments of the
invention that support sequencing producer dependencies is
to provide, for a get property method, a producer dependency
declaration statement that creates sequencing producer
dependencies on every method that sets the field for which
that get property method is responsible (e.g., with respect to
FIG. 7G, where the producer 780 is a producer that sets a field
and the producer 720 is the get property producer responsible
for that field, the dependency determination producer 775
would be written to return a downwardly declared sequencing
dependency of the producer 720 on the producer 780). A
second technique of handling this situation that may be used
in embodiments of the invention that support both sequencing
producer dependencies and upwardly declared producer
dependencies is to include, in the producer dependency dec-
laration statement/code for any method that sets a field, an
upwardly declared sequencing producer dependency (e.g.,
using an UpwardDependency or WeaklyConstrainedDepen-
dency) on the get method responsible for that field (e.g., with
respect to FIG. 7G, where the producer 720 is a producer that
sets a field and the producer 785 is the get property producer
responsible for that field, the dependency determination pro-
ducer 775 would written to return an upwardly declared
sequencing dependency of the parent producer 785 on the
producer 720). This second technique allows the programmer
of the method that sets the field to be responsible for provid-
ing a producer dependency to the appropriate get method, as
opposed to requiring that programmer to go to the get method
and modify its producer dependency declaration statement/
code.

When using sequencing dependencies, when a given pro-
ducer relies on a given variable, that variable should not be
modified by more than one of that producer’s descendant
producers in a given execution of the producer graph(s) (It
should be noted that through contingent dependencies (de-
scribed later herein), different descendant producers may
modify that variable during different executions of the current
producer graph(s)). For example, a get property producer
should only depend on one other producer that sets the filed
for which the get property producer is responsible in a given
execution of the current producer graph(s).

It should be understood that different embodiments of the
invention may implement one or more of the embodiments of
the invention shown in FIGS. 7A-F. For example, one
embodiment of the invention supports shortcut and non-
shortcut declared dependencies, both using dependency
determination producers; specifically, in this embodiment of
the invention: 1) the object-oriented source code includes
explicit producer dependency declaration code in methods
from which dependency determination producers are instan-
tiated at run time by the runtime for non-shortcut declared

US 9,201,766 B2

35

dependencies; 2) the runtime includes generic producer
dependency declaration code that it invokes as one or more
generic dependency determination producers on the fly for
shortcut declared, contingent dependencies (describer later
herein); and 3) the runtime includes support to directly link
shortcut declared, non-contingent producer dependencies
(describer later herein).

As another example, one embodiment of the invention
supports non-shortcut and shortcut declared producer depen-
dencies using dependency determination producers; specifi-
cally, in this embodiment of the invention: 1) the object-
oriented source code includes explicit producer dependency
declaration code in methods from which dependency deter-
mination producer are instantiated at run time by the runtime
for non-shortcut declared dependencies; and 2) the runtime
includes generic dependency determination code that it
invokes as one or more generic dependency determination
producers on the fly for shortcut declared dependencies (re-
gardless of type). This later embodiment allows for consistent
treatment of producer dependencies, and thus, simplifies the
runtime.

In addition, while in one embodiment of the invention the
producer dependency declaration statement for a method is
located just above that method in the object-oriented source
code, in alternative embodiments of the invention it is located
elsewhere (e.g., the producer dependency declaration state-
ments for all the methods for a class are grouped together
within the class, the producer dependency declaration state-
ments for all the methods in all of the classes are grouped
together as a separate data table, etc.). Also, while in one
embodiment of the invention producer dependency declara-
tion code is separate from the producer dependency declara-
tion statements, in alternative embodiments of the invention
they are combined (e.g., the producer dependency declaration
code is within the parentheses of the producer dependency
declaration statement, the producer dependency declaration
code is placed directly beneath the producer dependency
declaration statement and is treated by the runtime as a single
unit, etc.).

FIGS. 7H-I illustrate the distinction between different sub-
graphs that may exist in a producer graph due to dependency
determination producers. FIG. 7H illustrates exemplary pro-
ducer graphs of standard producers according to one embodi-
ment of the invention. Specifically, FIG. 7H shows a producer
graph with root node S1, a producer graph with root node S5,
and a producer graph with root node S11. The standard pro-
ducer S1 has as children standard producers S2, S3, and S4;
standard producers S2 and S3 have as children standard pro-
ducers S7 and S8; standard producer S5 has as children stan-
dard producers S4 and S6; and standard producer S11 has as
children standard producers S6 and S10. The exemplary pro-
ducer graphs of FIG. 7H may be discovered, built, and
revolved using any number of producer dependencies and
dependency determination producers. FIG. 71 illustrates one
example of producer dependencies and dependency determi-
nation producers for discovering, resolving, and building the
producer graph of FIG. 7H. Specifically, FIG. 71 shows the
graphs of FIG. 7H being subgraphs of a larger set of producer
graphs. In other words, the producer graphs of FIG. 71 include
the graphs of FIG. 7H (referred to as the “target subgraphs”
and illustrated using solid arrowed lines and solid ovals) and
graphs that assist in the discover, resolution, and building of
the target subgraphs (referred to as “decision subgraphs and
illustrated used dashed arrowed lines and dashed ovals). The
decision subgraphs in FIG. 7H include dependency determi-
nation producers (DDPs) 1-11 and standard producers S9-10.
In FIG. 7H, S1 is shown as being dependent on DDPs 1-3,

40

45

36

which respectively return downwardly declared producer
dependencies of S1 on S2, S3, and S4; S4 is shown as being
dependent on DDP4, which returns an upwardly declared
producer dependency of S5 on S4; S5 is shown as being
dependent on DDP5, which returns a downwardly declared
producer dependency of S5 on S6; S3 is shown as being
dependent on DDP6, which in turn is dependent on DDPS,
which returns a downwardly declared producer dependency
of DDP6 on S9 and S10, which causes DDP6 to return a
downwardly declared dependency of S3 on S7; S3 is shown as
being dependent on DDP7, which returns a downwardly
declared producer dependency of S3 on S8; S8 is shown as
being dependent on DDP9, which returns a sticky subscrip-
tion for which S6 is a trigger producer and S11 is the created
parent (thus, the producer dependency of S11 on S6); S2 is
shown as being dependent on DDP10, which returns a col-
lection of downwardly declared producer dependency of S2
on S7 and S8; and S11 is shown as being dependent on
DDP11, which returns a downwardly declared producer
dependency of S11 on S10. It should be understood that a
standard producer may be both part of a target subgraph and
a decision subgraph (e.g., see S10). It is worth noting that the
target subgraphs are data driven in the sense that data flows
from one standard producer to another standard producer up
the graph.

Exemplary Programming and Execution Framework

FIG. 8A is a block diagram illustrating a first exemplary
framework within which applications are provided to end
users according to one embodiment of the invention. The
framework shown in FIG. 8A includes three basic divisions.
The first division includes the creation of the runtime with
producer graph oriented programming support 810. This first
division is performed by programmers with highly advanced
programming skills. When working in this division, program-
mers are referred to as runtime programmers. When creating
a runtime with producer graph oriented programming sup-
port, the runtime programmers include support for producer
graphs, as well as support for executing the various types of
commands used in transformation code, instantiation code,
and data preparation code.

The second division includes the creation of object-ori-
ented application source code 820 to be executed by the
runtime. The object-oriented application source code 820
includes two basic divisions: 1) class definitions that include
the business logic expressed in methods with producer depen-
dency declarations 822 (this may optionally include other
functionality, such as a graphical user interface—in which
case, the graphical user interface is written using producers
and producer dependency declarations); and 2) class defini-
tions that include client code expressed in methods 824,
including instantiation code (class, instances, and producer(s)
of interest, to cause generation of the producer graph(s))
824 A, data preparation code 824B (e.g., set commands, such
as set commands that trigger the overriding of producer out-
puts), global execute commands 824C to cause execution of
the producer graph(s) (e.g., execute and get commands), and
any required graphical user interface 824D (not included in
822). The producer dependency declarations are used to
define the ties between producers during the definition of the
classes that include the business logic, rather than after
instances of those classes are created. The object-oriented
source code 820 is hard coded class, instance, and methods
that are compiled and executed.

While in one embodiment of the invention a global execute
command is implemented, execution of which causes the
attempted execution of all producer graph(s) currently in the
producer graph(s) structure 380, alternative embodiments of

US 9,201,766 B2

37

the invention alternatively or also implement a graph specific
execute command that requires identification of a given graph
of the current producer graph(s) that is to be executed. Fur-
ther, the global execute command may be explicit (e.g., set,
set, set, execute, get, get) or implicit depending on the imple-
mentation of the runtime. For example, an implicit global
execute command could be: 1) triggered by the first get com-
mand on a producer of interest (e.g., set, set, set, get (implicit
execute), get); 2) triggered by each data manipulation (set
(implicit execute), set (implicit execute), set (implicit
execute), get, get); etc.

The second division is again performed by programmers
with advanced programming skills, as well as an understand-
ing of the business objectives of the application. When work-
ing in this division, programmers are referred to as applica-
tion programmers. As part of this, if the application requires
a graphical user interface, the application programmers also
design and code the graphical user interface for the specific
application; and thus are also referred to as application
designers.

The third division includes the use of application programs
being run by the runtime. The third division is performed by
end users that need not have any programming skills. The
application program may be distributed in a variety of ways
(e.g., as source code; a transformation of source code, such as
byte code; as binary, etc). In addition, the application program
may be distributed for stand alone use 830 (in which case, the
entire application program (and runtime if not already
present) is provided to a computer system) and/or client/
server use. In one embodiment of the invention, a client/
server distribution includes distributing the class definitions
that include the business logic expressed in methods with
producer dependency declarations 822 (and runtime if not
already present) for server use 832 and the class definitions
that include client code expressed in methods 824 (and runt-
ime if not already present) for client use 834, where the client
use 834 on a computer system causes communication with
the server use 832 on a server system.

FIG. 8A also shows an optional configurable interactive
producer output layout graphical user interface module 840
being provided for the standalone use 830 and the client use
834. The object-oriented source code 820 would be run by the
runtime to generate the producer graph(s), and the config-
urable interactive producer output layout graphical user inter-
face module 840 allows for graphically displaying outputs
from and interacting with the producer graphs. Specifically,
the configurable interactive producer output layout graphical
user interface module 840 includes: 1) a configuration and
mapping graphical user interface module 844 to allow for the
configuration of the layout and mapping of selected producer
outputs (e.g., areas of the screen to be used, how the data is to
be displayed, etc.); and 2) a rendering and interaction graphi-
cal user interface module 846 to render the configured layout
and to allow for the overriding of producer outputs (which
results in the updating ofthe producer graphs through a global
execute command). It should be understood that the config-
urable interactive producer output layout graphical user inter-
face module 840 may or may not be created by the same entity
that writes the runtime 810.

FIG. 8B is a block diagram illustrating a second exemplary
framework within which applications are provided to end
users according to one embodiment of the invention. FIG. 8B
is identical to FIG. 8 A, with the following exceptions: 1) the
stand alone used 830 is not present; 2) the object oriented
source code 820 is provided to server use 832, while the client
code 824 is not provided to client use 834; 3) the configurable
interactive producer output layout graphical user interface

10

15

20

25

30

35

40

45

50

55

60

65

38

module 840 is provided to server use 832 and not client use
834; and 4) a generic configurable interactive producer output
layout client interface 885 is provided to client use 834. The
configurable interactive producer output layout client inter-
face 885 is used to interface with the configurable interactive
producer output layout graphical user interface module 840.

Regardless of the framework used, in one embodiment of
the invention the producer graph oriented programming
framework offers the ability to interface with programs not
written with producer dependency declarations. This ability
to interface with programs not written with producer depen-
dency declarations includes: 1) a caller part (such as a graphi-
cal user interface not written according to producer graph
oriented programming); and 2) a called part (such as an exter-
nal data source not written according to producer graph ori-
ented programming). The caller part may, through client
code, issues producer graph oriented programming com-
mands. The called part is implemented as part of producers
that wrap the called part (referred to as “wrapping produc-
ers”). Executing the called part (such as reading data from a
data source or subscribing to changes of data in an external
data source) may in turn trigger instance modifications. These
changes may occur by calling the property set methods in the
code of'the wrapping producers. Get property producers (get-
ters) are caused to have dependencies on these wrapping
producers, in order to make sure that instance modifications
triggered by the changes occurring in an external data source
are properly propagated through the producer graph. As pre-
viously described, different embodiments may support one or
more ways for declaring producer dependencies with respect
to property producers. For example, in some embodiments of
the invention that support sequencing producer dependen-
cies, SequencingDependencies may be used for declaring
non-subscription downwardly declared sequencing producer
dependencies on the wrapping producers. As yet another
example, in some embodiments of the invention that support
sequencing producer dependencies and non-subscription
upwardly declared producer dependencies, UpwardDepen-
dencies and/or WeaklyConstrainedDependencies may be
may be placed in the producer dependency declaration of the
wrapping producers to create non-subscription upwardly
declared sequencing producer dependencies for the property
producers.

FIGS. 8C-F illustrate exemplary screenshots and usage of
the configurable interactive producer output layout graphical
user interface module 840 according to one embodiment of
the invention. While embodiments of the invention will be
described with reference to the configurable interactive pro-
ducer output layout graphical user interface module 840 pro-
viding for the configuration, mapping, and interaction with
selected outputs of the current producers graph(s) in the form
of a spreadsheet, alternative embodiments of the invention
may be implemented to additionally or alternatively provide
support for another form. Further, while exemplary ways of
performing the configuration, mapping, and interaction in the
form of a spreadsheet is described according to some embodi-
ments, other embodiments of the invention may perform
these operations another way, with different interface, and/or
with a different screen layout. Further, the spreadsheet may
support any of the known functionalities associated with
spreadsheets (e.g., color selection, font selection, bar/pie/line
charts, pivot tables, saving layouts, loading layouts, etc.)

FIGS. 8C-D illustrate exemplary screenshots and usage of
free cell selection according to one embodiment of the inven-
tion, while FIGS. 8E-F illustrate exemplary screenshots and
usage of table creation according to one embodiment of the
invention. Each of FIGS. 8C-F include a menu bar 850 along

US 9,201,766 B2

39

the top of the screen, a list of classes (with their get property
methods) 852 of the producers in the current producer graph
and their outputs down the left side of the screen, and a
configuration and mapping viewer 854 filling the remainder
of the screen with a spreadsheet like layout. In addition,
FIGS. 8C-F also show the following exemplary list of classes
with their get property methods in the list 852: 1) the class
PERSON; 2) the get property methods of the class person
including FIRSTNAME (e.g., string), LASTNAME (e.g.,
string), GENDER (e.g., string), HOMEADDRESS (instance
of the class ADDRESS), PROFESSIONALADDRESS (in-
stance of the class ADDRESS), DATEOFBIRTH (e.g., date),
and AGE (e.g., integer); 3) the class ADDRESS; and 4) the get
property methods of the class ADDRESS including CITY
(e.g., string), STATE (e.g., string), ZIPCODE (e.g., string).
As such, the current producer graph includes producers of the
classes PERSON and ADDRESS, as well as producers whose
outputs are of classes PERSON and ADDRESS. It is also
worth nothing that the get property method AGE calculates an
age based on the output of the get property method DATEOF-
BIRTH; as such, a producer instantiated from the get property
method AGE will be dependent on a producer instantiated
from the get property method DATEOFBIRTH.

FIGS. 8C-D show the following free text entered in con-
secutive cells of the first column of the viewer: CUSTOMER,
FIRST NAME, LAST NAME, DATE OF BIRTH, and AGE;
while FIGS. 8E-F show the following: 1) free text entered in
the first row of the viewer—CUSTOMER LIST; and 2) free
text entered in consecutive cells of the second row of the
viewer FIRST NAME, LAST NAME, DATE OF BIRTH,
AND AGE.

FIG. 8C illustrates an exemplary screenshot and usage of
free cell selection with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention. FIG. 8C shows a set of
mappings 856 of the class PERSON and selected get property
methods of the class PERSON to different cells of the viewer.
Specifically, the class PERSON is mapped to the cell to the
right of the free text CUSTOMER. As part of this action, some
embodiments of the invention prompt the user to select from
one of a number of supported filters (show as filter selection
858) (e.g., drop down list, form scrolling arrows, etc.). These
filters enable the selection of one or more instance keys of
producers of the selected class, or one or more instance keys
of the producers whose output class is the selected class.
While some embodiments of the invention support a number
of filters, other embodiments of the invention default to one
(and allow the user to chose whether to select a different one)
or support only one and do not need to perform filter selection
858. The mappings 856 also show that the get property meth-
ods FIRSTNAME, LASTNAME, DATEOFBIRTH, and
AGE of the class PERSON are respectively mapped to the
cells adjacent to the cells with corresponding free text. Such
amapping may be performed with any number of well known
techniques, including drag and drop, typing in a GUI field,
etc.

FIG. 8D illustrates another exemplary screenshot and
usage of free cell selection with the configurable interactive
producer output layout graphical user interface module 840
according to one embodiment of the invention. FIG. 8D
shows that the cell to which the class PERSON was mapped
to allow for instance selection 854. Specifically, based on the
filter used for this cell, the user is given the opportunity to
select an instance of the class PERSON from a list including
the instance keys (s) of the producers of the class PERSON,
and the instance keys of the producers producing the class
PERSON. The selection of an instance of the class PERSON

40

45

50

40

(or the existence of a single instance) results the automatic
population of the cells, to which the get property methods of
the class PERSON were mapped, with the outputs of the
corresponding get property methods of that instance. This
populating of the table based on the instances of the class
PERSON is labeled 858. In the example of FIG. 8D, the cells
to which the get property methods FIRSTNAME, LAST-
NAME, DATEOFBIRTH, and AGE of the class PERSON
were mapped being respectively populated with JOHN,
SMITH, Jul. 20, 1990, and 16.

FIG. 8D also shows that cells of the viewer to which get
property methods have been mapped may be overridden. By
way of example, FIG. 8D shows that if the cell to which the
get property method DATEOFBIRTH is mapped is overrid-
den, then it will cause the overriding of the output of the
producer whose output is currently populating that cell, invo-
cation of a global execute command (which would result in a
reexecution of the producer whose output is currently popu-
lating the cell to which the get property method AGE is
mapped), and any necessary updating of the display.

FIG. 8E illustrates an exemplary screenshot and usage of
table creation with the configurable interactive producer out-
put layout graphical user interface module 840 according to
one embodiment of the invention. FIG. 8E shows a zone and
orientation selection 864 operation is performed to identify a
three row vertical table directly under the cells with free text
FIRST NAME, LASTNAME, DATE OF BIRTH, AND AGE
(illustrated with a thick dashed line around these cells). Dif-
ferent embodiments of the invention may support the user
performing this operation any number of ways (including: 1)
selection of an area with an input device like a mouse; and 2)
selection between a vertical, horizontal, or pivot table with an
interface like a popup menu—assuming multiple orientations
are supported). FIG. 8E also shows a set of mappings 866 of
selected get property methods of the class PERSON to dif-
ferent cells of the viewer. Specifically, the mappings 866
show that the get property methods FIRSTNAME, LAST-
NAME, DATEOFBIRTH, and AGE of'the class PERSON are
respectively mapped to the cells directly beneath the cells
with corresponding free text.

FIG. 8F illustrates another exemplary screenshot and usage
of table creation with the configurable interactive producer
output layout graphical user interface module 840 according
to one embodiment of the invention. The mappings 866
results in the automatic population of the columns of the
table, to which the get property methods of the class PERSON
were mapped, with the outputs of the corresponding get prop-
erty methods of the instances of that class. This populating of
the table based on the instances of the class PERSON is
labeled 868. In the example of FIG. 8D, the columns to which
the get property methods FIRSTNAME, LASTNAME,
DATEOFBIRTH, and AGE of the class PERSON were
mapped being populated with the following rows of data: 1)
STEVE, COLLINS, Jul. 20, 1990, and 16; 2) JENNIFER,
ADAMS, Jul. 20, 1990, and 16; and 3) JOHN, SMITH, Jul.
20, 1985, and 21.

As in FIG. 8D, FIG. 8F shows that cells of the viewer to
which get property methods have been mapped may be over-
ridden. By way of example, FIG. 8F shows that if the cell of
the second row of the column to which the get property
method DATEOFBIRTH is mapped is overridden, then it will
cause the overriding of the output of the producer whose
output is currently populating that cell, invocation of a global
execute command (which would result in a reexecution of the
producer whose output is currently populating the cell to
which the get property method AGE is mapped), and any
necessary updating of the display.

US 9,201,766 B2

41

FIGS. 8C-F illustrate exemplary screens generated by the
configuration and mapping graphical user interface module
842. The screens generated by the rendering and interactive
graphical user interface module 846 are the same, with the
exception that the list of classes (with their get property
methods) 852 the configuration and mapping viewer 854 are
replaced by a rendering and interactive viewer (not shown)
that contains the same image as the configuration and map-
ping viewer 854 displayed (the difference being the mapping
feature is no longer available).

Exemplary Runtime Distribution Schemes

FIGS. 9A-C illustrate various schemes for distributing a
runtime with producer graph oriented programming support.
It should be understood that these distribution schemes are
exemplary, and thus other schemes are within the scope of the
invention.

FIG. 9A is a block diagram illustrating a first scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention.
In FIG. 9A, object-oriented source code 905 (which would
include producer dependency declarations) is shown on top of
aruntime with producer graph oriented programming support
910, which is on top of a runtime with class loading, dynamic
class instantiation, dynamic single method invocation, and
class/method introspection 915, which is on top of an oper-
ating system 920. In FIG. 9A, the runtime 910 works with the
runtime 915. While any number of mechanisms may be used
to allow runtime 910 to work with runtime 915, a metadata
facility is described by way of example. A metadata facility
allows additional information to be added to source code,
which information is used by development tools. For
example, the Metadata Facility for Java specification defines
an API for annotating fields, methods, and classes as having
particular attributes that indicate they should be processed in
special ways by development tools, deployment tools, or
run-time libraries (Java Specification Request 175). In this
example, a programmer programming the object-oriented
source code 905 would add annotations to methods in the
form of the producer dependency declarations. Since these
annotations are handed off by the runtime 915 to the runtime
910, the runtime 910 dictates the syntax of the producer
dependency declarations. In FIG. 9A, the runtimes 910 and
915 may be developed and/or distributed by different organi-
zations.

FIG. 9B isablock diagram illustrating a second scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention.
In FIG. 9B, object-oriented source code 925 (which would
include producer dependency declarations) is shown on top of
a runtime (with class loading, dynamic class instantiation,
dynamic single method invocation, and class/method intro-
spection, as well as producer graph oriented programming
support) 930, which is on top of an operating system 935. In
comparison to FIG. 9A, the runtime 910 and 915 have been
combined into a single runtime 930. As a result of this com-
bination, the runtime 930 dictates the syntax of the producer
dependency declarations. Thus, a programmer programming
the object-oriented source code 925 would add the producer
dependency declarations in the required syntax.

FIG. 9C is a block diagram illustrating a third scheme for
distributing a runtime with producer graph oriented program-
ming support according to one embodiment of the invention.
In FIG. 9C, object-oriented source code 940 (which would
include producer dependency declarations) is shown on top of
an operating system runtime (with class loading, dynamic
class instantiation, dynamic single method invocation, and
class/method introspection, as well as producer graph ori-

10

30

40

45

50

42

ented programming support) 945. In comparison to FIG. 9B,
the runtime 920 and operating system 935 have been com-
bined into a single entity. As a result of this combination, the
operating system runtime 945 dictates the syntax of the pro-
ducer dependency declarations. Thus, a programmer pro-
gramming the object-oriented source code 940 would add the
producer dependency declarations in the required syntax.

While embodiments are described in which the runtime has
class loading, dynamic class instantiation, dynamic single
method invocation, and class/method introspection, alterna-
tive embodiments may include more or less features (e.g.,
instance cloning, dynamic proxies, primitive type conver-
sions, etc.)

Exemplary Advantages

In one embodiment of the invention, producer dependen-
cies are declared for methods as a way to specify method
invocation sequencing using the appropriate instances (where
the appropriate instances include the instances to use as argu-
ments, the instances to be used by instance methods, and the
meta class instances used by class methods) without using
manual invocation sequencing code. Effectively, the work of
generating some or all of manual invocation sequencing code
is replaced with: 1) work done by the application programmer
to write the producer dependency declarations; and 2) work
done by the runtime to discover and build the producer graph
(s) and execute the producers of those producer graph(s). In
other words, the logic that was previously contained in the
manual invocation sequencing code is discoverable by the
runtime during run time based on the producer dependency
declarations. Thus, the producer dependency declarations
inform the runtime what methods of what instances with what
arguments to execute, and when for synchronization pur-
poses. Although the effort to write the runtime is relatively
great, it needs only be written once in that it can be used to
execute any object-oriented applications written for the runt-
ime; in contrast, for a typical application, the effort to write
the producer dependency declarations is relatively low in
comparison to writing manual invocation sequencing code.

Reducing Programming Mistakes

Producer graph oriented programming typically reduces
the costs associated with the debugging and/or performance
tuning of the manual invocation sequencing code. This is true
for at least the reason that the infrastructure of an application
program is conceptually a set of non-formalized graphs of
transformation methods of objects (the output of one method
associated with an object is the input to another, and so on)
that operate on specific inputs. The producer dependency
declarations and the runtime with producer graph oriented
programming support formalizes these graphs as producer
graphs. Thus, for each opportunity for data to change, the
application programmer need not consider its eftect and write
manual invocation sequencing code to cause the appropriate
transformation methods of the appropriate instances to be
invoked in the appropriate order with the appropriate inputs.
In other words, for each opportunity for data to change, an
application programmer need not consider which graphs are
affected, as well as which transformation methods of
instances within those graphs are affected. Rather, the auto-
mated producer graph generation module discovers and
builds the producer graphs and the producer graph execution
module reexecutes the producer graphs as needed to reflect
changes in the data. This automation helps application pro-
grammers avoid mistakes such as: 1) invoking the appropriate
transformation methods of the appropriate instances in the
wrong order; 2) forgetting to include commands to cause the
one or more required transformation methods of instances in
a graph to be invoked responsive to some data being changed;

US 9,201,766 B2

43

3) including commands to cause unnecessary transformation
methods of instances to be invoked responsive to some data
being changed (e.g., including commands to invoke transfor-
mation methods of instances that are not part of a graph
affected by the change in data; including commands to invoke
transformation methods of instances that are part of a graph
affected by the change in the data, but are not themselves
affected; etc.).

Synchronization

As previously described, the caching of producer outputs
during execution allows for synchronization. Thus, in terms
of comparison to the observer pattern, the producer depen-
dency declarations notify a runtime with producer graph ori-
ented programming support of the dependencies, and the
runtime determines what producers and when to call back.

Ability to Fully Explain any Result

In one embodiment of the invention, a drilling/viewing
module (not shown) is included as part of the runtime. The
drilling/viewing module provides a graphical user interface
which, through interaction by an end user, allows for drilling
down into the producer graph (walking down a producer
graph from the root node) to view the outputs of the various
producers of the producer graph. This allows an end user to
see the various outputs that contributed to the output of the
producer of interest, including the data values and dependen-
cies (returned by dependency determination producers). Fur-
ther, in one embodiment of the invention, this drilling/view-
ing module provides the ability for the end user to view the
code inside the methods of the producers, the values of the
instances of the producers, and/or the content of the classes of
the producers.

Thus, the drilling/viewing module provides for a variety of
post processing activities, including debugging, explanation
of outputs, etc.

Exemplary Practical Application/Technical Effect/Indus-
trial Applicability

There are a variety of exemplary practical applications of
the different aspects and embodiments of the invention. For
example, the runtime, as part of executing application pro-
grams, causes the retrieval of information from a machine
storage media (e.g., accessing the object-oriented source
code, including the producer dependency declarations), the
storage of information to a machine storage media (e.g.,
storing data structures like the producer graph(s) structure,
etc.), the operation of hardware processing resources, the
provision of the outputs of the producer(s) of interest (e.g.,
through a graphical user interface, storage to machine storage
media, transmission, etc.), etc. In one sense, preprocessing
activity includes the writing of such an application program
and/or the provision of data (which data may represent any
number of physical and/or practical items, such as financial
values, geographical values, meteorological values, actuarial
values, statistical values, physical measures, machine state
values, etc.), while post processing activity includes the pro-
vision of results (which results may represent any number of
physical and or practical items, such as financial analysis,
geographical analysis, meteorological analysis, actuarial
analysis, statistical analysis, industrial measures, machine
control information, etc. By way of specific example, post
processing activity may be provided by: 1) the producer graph
viewer module 1062 of FIG. 10 for graphically displaying a
representation of the current producer graph(s) generated by
the runtime; and/or 2) the configurable interactive producer
output layout graphical user interface module 840 (see also,
configurable interactive producer output layout graphical

10

15

20

25

30

35

40

45

50

55

60

65

44

user interface module 1085 of FIG. 10) for graphically dis-
playing outputs from and interacting with the producer
graphs.

As another example, the application program with pro-
ducer dependency declarations itself, when executed by the
runtime, represents the physical/practical items and causes
the operations described above. By way of specific example,
these producer dependency declarations cause data structures
to be formed in machine storage media responsive to their
execution by the runtime. Also, the producer dependency
declarations are stored and retrieved from machine storage
media along with the application program. Further, these
producer dependency declarations represent relationships
between producers, while producers represent operations to
be performed (methods) and instances. The instances in
object-oriented programming may be used to represent physi-
cal and/or practical items, while the producers represent
operations to be performed on these representations.

By way of another example, a set of one or more applica-
tion programs and the runtime implement cross-asset risk
management software covering foreign exchange, equity,
interest rate, credit, inflation, commodity, and cross-asset
composite products. These products range from cash and
physical plain vanilla products to exotic and complex deriva-
tive products. Also included is a set of mathematical valuation
models for these products, and their associated market data,
payment and accounting entries generation routines and their
associated observables, calibration models and their associ-
ated raw inputs.

By way of another example, a set of one or more applica-
tion programs and the runtime may implement a word pro-
cessor, a spreadsheet, a communication/e-mail software, a
photo viewing software, a virus scan software, a media
player, a database server, a game, an industrial application, a
computer aided design tool application, and/or an operating
system. Of course, application programs can be implemented
to perform a variety of other tasks.

Exemplary Implementations

By way of illustration, exemplary embodiments of the
invention will be described that support dependencies,
dynamic dependencies (including contingent dependencies
and subscription dependencies), explicit dependency deter-
mination producers for shortcut declared dependencies and
for non-shortcut declared dependencies, on the fly depen-
dency determination producers for shortcut declared depen-
dencies, class keys, instance keys, method keys, producer
override/unoverride commands (which are types of set com-
mands), and global execute commands. In addition, the exem-
plary embodiments optionally support a producer graph inter-
active viewer module and incremental execution. Of course,
alternative embodiments of the invention may implement
more, less, and/or different features.

FIG. 10 is a block diagram of an exemplary implementa-
tion according to one embodiment of the invention. In FIG.
10, dashed dividing line 1000 separates a runtime client 1002
from a runtime with producer graph oriented programming
support 1004.

The logical execution flow of the runtime client 1002
includes blocks 1010, 1020, 1025, 1030, and 1035, and the
runtime with producer graph oriented programming support
1004 includes respectively corresponding blocks 1095, 1098,
1040, 1045, and 1070; while a solid arrowed line represents a
direct causal relationship from block 1035 of the logical
execution flow of the runtime client 1002 to block 1070 of the
runtime with producer graph oriented support 1004, dotted
arrowed lines illustrate a causal relationship from blocks
1010, 1020, 1025, and 1030 of the runtime client 1002 to

US 9,201,766 B2

45

blocks 1095, 1098, 1040, and 1045 of the runtime with pro-
ducer graph oriented programming support 1004. Depending
on the embodiment of the invention, these later causal rela-
tionships may be direct or indirect. For example, similar to
FIG. 6, an optional indirect causation through the use of a
command log (not shown) and/or override log 1047 may be
used. Further blocks 1095 and 1098 are dashed because they
may optionally be part of a different block depending on the
embodiment of the invention (e.g., block 1095 may be part of
block 1098; block 1098 may be part of block 1040; blocks
1095 and 1098 may be part of block 1040). Similarly, block
1045 is dashed because it may be optionally part of a diftferent
block depending on the embodiment of the invention (e.g.,
block 1045 may be part of block 1070).

In FIG. 10, the runtime 1002 includes class definitions that
include business logic 1010 having data 1012, methods 1014,
producer dependency declarations 1016, and optionally class
keys 1090. The class definitions 1010 are classes in an object-
oriented programming language, and thus include definitions
for data 1012 and methods 1014. In addition, these class
definitions 1010 include producer dependency declarations
1016 for the method 1014 as previously described. Further, in
one embodiment of the invention, each class has a class key
1090 for tracking purposes.

The new class module 1095 of the runtime 1004 loads and
introspects the class definitions 1010 (e.g., responsive to new
class commands). This loading and introspecting may be
done using any number of well known or future developed
techniques, including those to selectively load classes for
optimization purposes. The loading of the classes by the new
class module 1095 is illustrated by classes 1054 of the runt-
ime 1004. As part of loading and introspecting the classes
1054, the new class module 1095 also loads and introspects
the producer dependency declarations 1016 as illustrated by
methods and producer dependency declarations 1056 in the
classes 1054. The new class module 1095 also maintains a
class tracking structure 1092 that is used for tracking the
classes using the class keys. Thus, the class tracking structure
1092 maintains a correspondence between class keys and
references into the classes 1054. Further, the new class mod-
ule 1095 also maintains a method tracking structure 1058 that
is used for tracking methods using the method keys. Thus, the
method tracking structure 1058 maintains a correspondence
between method keys and references to the methods, as well
as information regarding the producer dependency declara-
tions.

The runtime client 1002 also includes instance instantia-
tion commands with instance keys 1020. The new instance
module 1098 of the runtime 1004 instantiates the instances
designated by the instance instantiation commands with
instance keys 1020 (e.g., responsive to new instance com-
mands). This instantiating of instances may be done using any
number of well known or future developed techniques,
including those to selectively instantiate instances for opti-
mization purposes. As part of this instantiating of instances,
the new instance module 1098 accesses the class tracking
structure 1092 using a class key to access the appropriate
class from the classes 1054. The instantiating of instances by
the new instance module 1098 is illustrated by instances 1052
of the runtime 1004. The new instance module 1095 also
maintains an instance tracking structure 1065 that is used for
tracking the instances using the instance keys. Thus, the
instance tracking structure 1065 maintains a correspondence
between instance keys and references into the instances 1052.
As previously indicated, the new class module 1095 may be
part of the new instance module 1098 in that the classes 1054

10

15

20

25

30

35

40

45

50

55

60

65

46

may be instantiated responsive to the instance instantiation
commands 1020, as opposed to separate new class com-
mands.

The runtime client 1002 also includes producer instantia-
tion commands with producer keys 1025. The automated
producer graph generation module 1040 of the runtime 1004
instantiates producers designated by the producer instantia-
tion commands with producer keys 1025 (e.g., responsive to
new producer commands designating the current set of pro-
ducers of interest). In addition, the automated producer graph
generation module 1040 also discovers, builds, and option-
ally resolves the producer graph(s) responsive to the current
set of producers of interest as previously described. In one
embodiment of the invention, a producer key is comprised of
a class key, instance key, and method key. As part of this
instantiating of producers, the automated producer graph
generation module 1040: 1) accesses the class tracking struc-
ture 1092 using the class key to access the appropriate class
from the classes 1054; 2) accesses the instance tracking struc-
ture 1065 using the instance key to access the appropriate
instance from the instances 1052; and 3) accesses the method
tracking structure using the method key to access the appro-
priate producer dependency declaration statement. The
instantiating of the producers designated by the producer
instantiation commands with producer keys 1025 and instan-
tiating of the any discovered producers and building the pro-
ducer graph is illustrated by producer graph(s) structure 1060
of the runtime 1004. Thus, in one embodiment of the inven-
tion, the producer keys identified by the producer instantia-
tion commands with producer keys 1025 and those discov-
ered through producer graph generation are stored in the
producer graph(s) structure 1060, along with additional infor-
mation to represent the current producer graph(s).

As previously described, the block 1095 and 1098 may be
part of block 1040, and thus, the decision regarding which
classes, instances, and producers to load/instantiate is driven
by what producers are in the current producer graph(s). In
such an embodiment of the invention, the loading/instantiat-
ing of class, instances, and producers is optimized and is
producer centric.

The runtime client 1002 also includes data preparation
commands, including producer output override/unoverride
commands 1030. The override/unoverride commands
include the producer key of the producer to be overridden/
unoverridden, as well as the override values when being over-
ridden. The override producer output module 1045 of the
runtime 1004 causes producers designated by the producer
override/unoverride commands to be overridden/unoverrid-
den. This causation may be indirect or direct.

In the case of indirect causation, the override producer
output module 1045 populates the override log 1047 for con-
sumption by the producer graph execution module 1070. In
the case of direct causation, the override producer output
module 1045 accesses the producer output caching 1097 of
the producer graph(s) structure 1060 and the instances 1052.
Specifically, as described with reference to the override pro-
ducer output module 390, in one embodiment, producers can
be classified as property producers or method producers; thus,
the override producer output module 1045 may include an
override property producer output module (not shown) for
overridden property producers and an override method pro-
ducer output module (not shown) for overridden method pro-
ducers; the overriding of a property method causes the over-
ridden value to be stored in the producer output caching 1097
of'the producer graph(s) structure 1060 and to be stored in the
data of the appropriate instance of the instances 1052,

US 9,201,766 B2

47

whereas the overriding of a method producer causes the over-
ridden value to be stored in the producer output caching 1097.

In one embodiment of the invention producers may not be
overridden before a producer graph of which they will be part
has been initially executed (thus, the producer will already be
instantiated as a result of being designated as a producer of
interest or as a result of being discovered by the automated
producer graph generation module 1040). However, in the
embodiment shown in FIG. 10, producers may be overridden
before the initial execution by being instantiated and overrid-
den with a producer override command. Such an overridden
producer will typically eventually become part of a producer
graph through the discovery process (e.g., when a dynamic
dependency is resolved). In some embodiments of the inven-
tion, this data preparation may also include other types of set
commands. The override producer output module 1045 is
shown as a dashed box because it may not be present in
alternative embodiments of the invention.

The producer graph(s) structure 1060 also optionally
includes incremental execution marking 1080 for some
embodiments of the invention that support incremental
execution. As previously described with reference to the
incremental execution marking 382 of F1G. 3B, the incremen-
tal execution markings 1080 is used to assist with incremental
execution of the producer graph(s) on execution beyond that
of the initial execution. Different embodiments of the inven-
tion that use the incremental execution marking 382, use them
in different ways. For example, in one such embodiment of
the invention that has a command log, the log is used to track
which producers have been added and/or modified, and the
incremental execution marking 382 are used to mark those
producers that are affected (ancestors of the modified or
added producers, and thus dependent on them). As another
example, in one such embodiment of the invention that does
not have a command log, the incremental execution marking
382 are used to mark those producers that are added or modi-
fied, as well as those that are ancestors of the modified or
added producers (and thus dependent on them). As another
example, in one such embodiment of the invention that does
not have a command log, modifications and additions of
producers are done immediately and the incremental execu-
tion marking 382 are used to mark those producers that are
ancestors of the modified or added producers (and thus
dependent on them). While embodiments of the invention
have been described that support incremental execution and
use incremental execution marking, other embodiments of
the invention support incremental execution that do not use
incremental execution marking (e.g., a command log is used
to track which producers were added or modified, and a list of
execution start producers is maintained in an execution start
log; where the producer graph execution module 1070 starts
from the execution start producers and works its way up the
ancestors of the producer graph(s) to the top; by way of
example and not limitation, this embodiment of the invention
is described later herein with regard to FIGS. 15-25.

The runtime client 1002 also includes global execution
commands 1035. The producer graph execution module 1070
of the runtime 1004 executes the producer graph(s). As such,
the producer graph execution module 1070 modifies the pro-
ducer output caching 1097 (in the case of property producers
and method producers), uses the incremental execution mark-
ing 1080 (if present), and modifies the data of the instances
1052 (in the case of property methods). Various techniques
have been previously discussed for executing the producers of
the producer graph and are applicable here. For instance, in
embodiments in which a command log is implemented, the
command log is consumed and then the producer graph(s) are

20

35

40

45

55

48

executed. Further, in embodiments of the invention that sup-
port the possibility of unresolved dependencies, producer
graph execution module 1070 includes dynamic dependency
module 1075, which can invoke the automated producer
graph generation module 1040.

FIG. 10 also shows an optional producer graph viewer
module 1062 that provides a mechanism (e.g., a graphical
user interface) by which a programmer/user can view the
producer graph(s) and producer outputs of the producer graph
(s) structure. Further, FIG. 10 shows an optional configurable
interactive producer output layout graphical user interface
module 1085 to provide for a graphical user interface (includ-
ing dynamic invocation of blocks 1030, and 1035) that rep-
resents the configurable interactive producer output layout
graphical user interface module 840.

In embodiments of the invention that use a command log,
different triggers may be use to trigger different actions. For
instance, the producer instantiation commands may be
logged and batch processed responsive to an explicit com-
mand (start logging and end logging), an explicit global
execute command (logging starts automatically at startup and
after each explicit global execute command, and each log is
processed responsive to the following explicit global execute
command), an explicit data preparation command, etc. Simi-
larly, the data preparation commands may be logged and
batch processed responsive to an explicit global execute com-
mand, a first get command, every get command, etc.

Exemplary Tracking Structures

FIGS. 11A-D are block diagrams illustrating exemplary
content of the data structures of FIG. 10 according to one
embodiment of the invention. While FIGS. 11A-D illustrate
these data structures as tables, it should be understood that
any suitable data structure may be used (e.g., a hash map, a
set, a list).

FIG. 11A is a block diagram of an example of the class
tracking structure 1092 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11A, a class key column 1110
and a class reference column 1115 are shown to respectively
store the class keys and corresponding references to the
loaded classes.

FIG. 11B is a block diagram of an example of the instance
tracking structure 1065 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11B, an instance key column
1120 and an instance reference column 1125 are shown to
respectively store the instance keys and corresponding refer-
ences to the instances. In embodiments of the invention in
which instance keys need not be unique across all classes, the
instance tracking structure also include the class key or ref-
erence for the class of the instance.

FIG. 11C is a block diagram of an example of the producer
graph(s) structure 1060 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11C, a class reference column
1135, an instance reference column 1140, and a method ref-
erence column 1145 are shown to respectively store refer-
ences that make up the current producers of the current pro-
ducer graph(s). These references may take a variety of forms.
For example, these columns may respectively store refer-
ences into the classes 1054 (or alternatively 1092), instances
1052 (or alternatively 1065), and methods 1056 (or alterna-
tively 1058). While in one embodiment of the invention these
columns store references, in alternative embodiment of the
invention one or more of these columns store keys.

In addition, FIG. 11C includes a parent producer(s) link(s)
column 1150 (including for each link a parent producer ref-
erence, and a dependency determination producer reference)
and a child producer(s) link(s) column 1160 (including for
each link, child producer reference(s), a dependency deter-

US 9,201,766 B2

49

mination producer reference, a link mode, and a sticky link
indicator). Each producer may have zero or more child pro-
ducer links in column 1160. Each child producer link in
column 1160 includes: 1) child producer reference(s) which
are references to other rows of the producer graph(s) structure
to represent a producer dependency according to the producer
dependency declaration; 2) a dependency determination pro-
ducer reference which is a reference to another row of the
producer graph(s) structure and represents the dependency
determination producer that has created the child link; and 3)
a link mode with a producer dependency type that identifies
whether the producer dependency is a result of an argument,
afield, or a sequencing dependency (see discussion regarding
FIGS. 7A-F), and if an argument, the argument ID of the
producer dependency; and 4) a sticky indicator to indicate
that the link mode is the result of an upwardly declared
dependency (in embodiments of the invention that support
upwardly declared dependencies) or the result of a sticky
subscription (in embodiments of the invention that support
sticky subscriptions) and should not be modified through the
producer argument dependency declaration of this producer
(i.e., the producer stored in the row of the column containing
the sticky indicator). Each producer may have zero or more
parent producer links in column 1150. Each parent producer
link in column 1150 includes: 1) a parent producer reference
that stores back a reference in accordance with a child pro-
ducer reference of another producer (i.e., a reference to
another row of the producer graph(s) structure to represent a
parent producer dependent on this producer); and 2) a depen-
dency determination producer reference which is a reference
to another row of the producer graph(s) structure and repre-
sents the dependency determination producer which has cre-
ated the parent link. Thus, when a link is created, the parent
producer link column of the child producer’s row and the
child producer link column of the parent producer’s row are
modified to represent the link (and the dependency determi-
nation producer reference is the same in both). In one embodi-
ment of the invention, since multiple paths in a producer
graph or different producer graphs may include a given pro-
ducer, there may be multiple parent producer links for a given
producer.

Further, FIG. 11C includes a producer output caching and
override producer output modification column 1170 to store
the current producer outputs, as well as an indication of
whether the producer is overridden and the overridden output
value. Also, FIG. 11C includes an incremental execution
marking column 1180 to store incremental execution mark-
ings as previously described.

FIG. 11D is a block diagram of an example of the method
tracking structure 1058 of FIG. 10 according to one embodi-
ment of the invention. In FIG. 11D, a method key column
1190 and a method reference column 1192 are shown to
respectively store the method keys and corresponding refer-
ences to the methods of the loaded classes. In addition, FIG.
11D also includes an ArgumentDependencies column 1194, a
FieldDependencies column 1196, a SequencingDependen-
cies column 1195, an UpwardDependencies column 1193, a
WeaklyConstrainedDependencies column 1199, an output
class column 1197, and an optional additional annotations
column 1198. The ArgumentDependencies column 1194, the
SequencingDependencies column 1195, the UpwardDepen-
dencies column 1193, the WeaklyConstrainedDependencies
column 1199, and the FieldDependencies column 1196 store
producer dependency information parsed from the producer
dependency declaration statement of the method (e.g., see
705 of FIG. 7A), while the output class column 1197 stores
information regarding the output class of the output of the

35

40

45

50

50

method (determinable by the method’s signature—e.g., see
710 of FIG. 7A). Exemplary contents of the ArgumentDepen-
dencies column 1194, FieldDependencies column 1196,
SequencingDependencies column 1195, UpwardDepen-
dency column 1193, and WeaklyConstrainedDependencies
column 1199, used in some embodiments of the invention are
provided later herein.

Dynamic Producer Dependencies

As previously described, one embodiment of the invention
supports non-dynamic and dynamic producer dependencies.
While different embodiments may support different types of
dynamic producer dependencies, one embodiment of the
invention supports contingent and subscription types of
dynamic producer dependencies. Thus, a non-contingent,
non-subscription dependency is a non-dynamic (static)
dependency.

FIG. 12 is a block diagram illustrating additional detail of
FIG. 10 to support contingent and subscription type dynamic
producer dependencies according to one embodiment of the
invention. FIG. 12 includes from FIG. 10 the dashed dividing
line 1000, the class definitions that include business logic
1010 (which include data 1012, methods 1014, and producer
dependency declarations 1016), the new class module 1095,
the classes 1054 (including methods and producer depen-
dency declarations 1056), the new instance module 1098, the
instances 1052, the instance tracking structure 1065, the auto-
mated producer graph generation module 1040, the producer
graph(s) structure 1060, and the producer graph execution
module 1070 (including the dynamic dependency module
1075).

FIG. 12 shows that the producer dependency declarations
1016 optionally include contingent dependencies 1210, sub-
scription dependencies 1220, and multiple producers 1215.
Here, multiple producers 1215 refers to the ability of a pro-
ducer dependency to return a collection of producers. In addi-
tion, FIG. 12 includes a subscription module 1240 and a
contingency module 1230 in the automated producer graph
generation module 1040 to process the contingent dependen-
cies 1210 and subscription dependencies 1220. FIG. 12 also
shows that the subscription module 1240 accesses a subscrip-
tion log 1250. Further, the dynamic dependency module 1075
includes a contingency module 1260 and a subscription mod-
ule 1265 to process the contingent dependencies 1210 and
subscription dependencies 1220. The subscription module
1265 accesses the subscription log 1250.

The following description of contingent and subscription
dependencies is done in the context of an embodiment of the
invention that uses a class DEP (an abbreviation for depen-
dency), from which an instance is returned by dependency
determination producers and is analyzed by the runtime with
producer graph oriented programming support. The class
DEP includes the following fields: 1) TYPE which can be set
to subscription, non-subscription downwardly declared
(child producers that are not subscriptions), or non-subscrip-
tion upwardly declared (parent producers that are not sub-
scriptions); 2) PROD which is used for non-subscription
downwardly declared dependencies and is a collection of
child producers (as such, it can store zero or more producers);
3) SUB TYPE which is used for subscription dependencies
and is set to indicate the type of subscription dependency
(used in embodiments of the invention that support multiple
types of subscription; while the embodiment of the invention
described here supports two types—sticky and absorbing,
alternative embodiments may support more, less, and/or dif-
ferent subscription types; 4) SUB CRIT which is used for
subscription dependencies and is set to indicate the subscrip-
tion criteria; 5) PAR LINK MODE which is used for sticky

US 9,201,766 B2

51

subscription dependencies and non-subscription upwardly
declared dependencies and is set to indicate what the link
mode ofthe parent producer should be; 6) PAR CLASS which
is used for sticky subscription dependencies and non-sub-
scription upwardly declared dependencies and is set to indi-
cate what the class of the parent producer (e.g., the class key)
should be; 7) PAR METHOD which is used for sticky sub-
scription dependencies and non-subscription upwardly
declared dependencies and is set to indicate what the method
of'the parent producer (e.g., the method key) should be; and 8)
PAR INSTANCE which is used for sticky subscription depen-
dencies and non-subscription upwardly declared dependen-
cies and is set to indicate what the instance of the parent
producer (e.g., the instance key) should be (If PAR
INSTANCE is left blank, the instance key of the child pro-
ducer is then used for the parent producer). An alternative
embodiment could use a collection of parent producers (each
item of the collection holding a PAR_CLASS, PAR_IN-
STANCE, PAR_METHOD, PAR_LINK MODE) in the case
of sticky subscription dependencies and/or non-subscription
upwardly declared dependencies. Of course, other alternative
embodiments of the invention could use a different structure
to return dependencies.

Contingent Dependencies

In one embodiment of the invention, both non-contingent
and contingent producer dependencies are supported. A non-
contingent producer dependency is one that is independent of
the output of other producers, while a contingent producer
dependency is one that is dependent on the output of other
producers. While one embodiment of the invention supports
both non-contingent and contingent producer dependencies,
alternative embodiments support only non-contingent or con-
tingent (which contingent producer dependencies may be
initially driven by default values).

As previously discussed, a producer can be viewed as a set
of multiple identifiers, one identifier for each additional level
of granularity specified. In one embodiment of the invention,
a contingent producer dependency can be contingent in the
sense that any one or all of the set of identifiers can be
conditionally determined based on current data values. For
instance, a first contingent producer dependency may have
only the instance identifier be conditionally determined (the
class and method identifiers are fixed), while a second con-
tingent producer dependency may have the class, instance,
and method identifiers be conditionally determined. While in
one embodiment of the invention, all of the plurality of iden-
tifiers of a contingent producer dependency may be condi-
tional, alternative embodiments of the invention may be
implemented differently (e.g., only allow a subset of the
plurality of identifiers to be conditional).

FIGS. 13A-]J are block diagrams illustrating pseudo code
and exemplary producers according to one embodiment of the
invention. In addition, the embodiments shown in FIG. 13A-J
use the same dependency determination mechanism for both
contingent and non-contingent dependencies. As such, for
explanation purposes, some of the examples in FIGS. 13A-]
are examples of non-contingent producer dependencies,
while the others are examples of contingent producer depen-
dencies. Further, a non-contingent producer dependency is
one in which the dependency is to a dependency determina-
tion producer that is an independent producer (e.g., in one
embodiment of the invention, the dependency type is identi-
fiable because its producer dependency declaration is empty);
while a contingent producer dependency is one in which the
dependency is to a dependency determination producer that is
a dependent producer (e.g., in one embodiment of the inven-

10

15

20

25

30

35

40

45

50

55

60

65

52

tion, the dependency type is identifiable because its producer
dependency declaration is non-empty).

Further, circled numbers and letters are used in FIGS.
13A-]J to illustrate the order in which operations are per-
formed according to one embodiment of the invention. Also,
a notation X::Y::Z is used in FIGS. 13A-J to represent a
producer key made up of a class key (X), an instance key (Y),
and a method key (7). Further dashed circles and arrowed
lines represent operations that are not performed in some
embodiments of the invention. In particular, where the execu-
tion of an independent dependency determination producer
for a given dependency will always return the same depen-
dency (e.g., an independent dependency determination pro-
ducer), such dependency determination producer in some
embodiments of the invention is executed but not instantiated
and linked in the producer graph(s).

Explicit Dependency Determination Producers

FIG. 13A illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut declared, non-
dynamic (non-contingent, non-subscription) dependency
according to one embodiment of the invention; while FIG.
13B is a block diagram of producers illustrating an exemplary
non-shortcut declared, non-dynamic (non-contingent, non-
subscription) producer dependency according to one embodi-
ment of the invention. FIG. 13A shows: 1) a producer depen-
dency declaration statement 1300 for a method alpha 1305,
where the producer dependency declaration statement 1300
includes a producer dependency to a producer CW::IY::
BETA; and 2) a producer dependency declaration statement
1310 for a method beta 1315, where the producer dependency
declaration statement 1310 is empty, and where the method
beta 1315 returns as an argument an instance of the class DEP.
The method beta 1315 includes producer dependency decla-
ration code 1320 that sets DEP.TYPE to non-subscription
downwardly declared, sets DEP.PROD to producer 13, and
returns DEP.

InFIG. 13A, acircled 1 indicates that the producer depen-
dency declaration 1300 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305, as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13B shows that
a producer CO0::10::ALPHA is instantiated based on the
method alpha 1305. A circled 3 in FIG. 13 A indicates that the
producer dependency to producer CW::IY::BETA is pro-
cessed to determine the producer dependency, and as a result,
acircled 4 indicates that the producer dependency declaration
1310 is accessed. A dashed circled 5 in FIG. 13B shows that
a producer CW::IY::BETA is instantiated as a dependency
determination producer 1380. A dashed circled 6 in FIG. 13B
indicates that the producer C0::10::ALPHA is linked in the
producer graph to indicate that producer CW::1Y::BETA is a
child producer. A circled 7 in FIG. 13B indicates that the
producer CW::IY::BETA is executed and returns DEP to
identify producer 13. A circled 8 indicates producer 13 is
instantiated, while a circled 9 indicates the producer 13 being
linked as a child producer in the producer graph to the pro-
ducer C0::10:: ALPHA. In FIG. 13B, producer C0::10::AL-
PHA and producer 13 are standard producers 1385 (they are
not dependency determination producers).

FIG. 13C illustrates pseudo code of producer dependency
declarations for methods using a non-shortcut declared, con-
tingent, non-subscription producer dependency according to
one embodiment of the invention; while FIG. 13D is a block
diagram of producers illustrating an exemplary non-shortcut
declared, contingent, non-subscription producer dependency
according to one embodiment of the invention. In addition,

US 9,201,766 B2

53
FIG. 13D refers to the producers 5, 7A, and 7B of FIG. 5A and
the resolution of the dynamic dependency of producer 5 to the
producer 7A.

FIG. 13C shows: 1) a producer dependency declaration
statement 1300 for a method alpha 1305, where the producer
dependency declaration statement 1300 includes a producer
dependency to a producer CW::IY::BETA; 2) a producer
dependency declaration statement 1325 for a method beta
1315, where the producer dependency declaration statement
1325 includes a producer dependency to a producer CU::1V::
DELTA, and where the method beta 1315 returns as an argu-
ment an instance of the class DEP; 3) a producer dependency
declaration statement 1332 for a method delta 1334, where
the producer dependency declaration statement 1332 is
empty, and where the method delta 1334 returns as an argu-
ment an instance of the class DEP; and 4) a producer depen-
dency declaration statement 1338 for a method gamma 1340,
where the producer dependency declaration statement 1338 is
empty, and where the method gamma 1340 returns a variable
X (where X is from an external source, a default value (ex-
plicit or constant in the class)). The method beta 1315
includes producer dependency declaration code 1330 that
sets DEP.TYPE to non-subscription downwardly declared,
sets DEP.PROD to producer 7A or 7B depending on the
output of producer CX::IZ::GAMMA, and returns DEP. The
method delta 1332 includes producer dependency declaration
code 1336 that sets DEP.TYPE to non-subscription down-
wardly declared, sets DEP.PROD to the producer CX::1Z::
GAMMA, and returns DEP.PROD.

In FIG. 13C, a circled 1 indicates that the producer depen-
dency declaration 1300 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305 as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13D shows that
the producer 5 is instantiated based on the method alpha 1305.
A circled 3 in FIG. 13C indicates that the producer depen-
dency to producer CW::IY::BETA is processed to determine
the producer dependency, and as a result, a circled 4 indicates
that the producer dependency declaration 1325 is accessed. A
circled 5 in FIG. 13D shows that a producer CW::1Y::BETA is
instantiated as a dependency determination producer 1380. A
circled 6 in FIG. 13D indicates that the producer 5 is linked in
the producer graph to indicate that producer CW::1Y::BETA
is a child producer.

A circled 7 in FIG. 13C indicates that the producer depen-
dency to producer CU::IV::DELTA is processed to determine
the producer dependency, and as a result, a circled 8 indicates
that the producer dependency declaration 1332 is accessed. A
dashed circled 9 in FIG. 13D shows that a producer CU::IV::
DELTA is instantiated as a dependency determination pro-
ducer 1380. A dashed circled 10 in FIG. 13D indicates that the
producer CW::IY::BETA is linked in the producer graph to
indicate that producer CU::IV::DELTA is a child producer. A
circled 11 in FIG. 13D indicates that the producer CU::IV::
DELTA is executed and returns DEP to identify CX::1Z::
GAMMA. A circled 12 indicates that the producer CX::1Z::
GAMMA is instantiated, while a circled 13 indicates the
producer CX::1Z::GAMMA being linked as a child producer
in the producer graph to the producer CW::1Y::BETA.

In FIG. 13D, a circled A indicates that the producer CX::
17::GAMMA is executed and returns X to producer CW::1Y::
BETA, while a circled B indicates that the producer CW::IY::
BETA returns DEP to identify producer 7A; a circled C
indicates that the unresolved remainder (method beta) 1390 is
now resolved and producer 7A is instantiated, while a circled

10

15

20

25

30

35

40

45

50

55

60

65

54
D indicates the linking of the producer 5 to the producer 7A.
In FIG. 13D, producers CX::IZ::GAMMA, 5, and 7A are
standard producers 1385.

On the Fly Dependency Determination Producers

FIG. 13E illustrates pseudo code of producer dependency
declarations for methods using both a non-shortcut declared,
contingent, non-subscription producer dependency and a
shortcut declared, contingent, non-subscription producer
dependency according to one embodiment of the invention;
while FIG. 13F is a block diagram of producers illustrating a
non-shortcut declared, contingent, non-subscription pro-
ducer dependency and a shortcut declared, contingent, non-
subscription producer dependency according to one embodi-
ment of the invention. Similar to FIG. 13D, FIG. 13F refers to
the producers 5, 7A, and 7B of FIG. 5A and the resolution of
the dynamic dependency of producer 5 to the producer 7A.

FIGS. 13E-F are the same as FIGS. 13C-D, with the excep-
tions: 1) a producer dependency declaration statement 1342
replaces the producer dependency declaration statement
1325; 2) a method fly 1344 replaces the method delta 1334;
and 3) a producer CW::1Y::FLY replaces the producer CU::
IV::DELTA. The producer dependency declaration statement
1342 includes a shortcut declared producer dependency to the
CX::1Z::GAMMA. Thus, the circled 4 in FIG. 13E now indi-
cates that the producer dependency declaration 1342 is
accessed. The circled 7 in FIG. 13E now indicates that the
shortcut declared producer dependency to producer CX::1Z::
GAMMA is processed to determine the producer depen-
dency, and as a result, the runtime invokes the dependency
determination producer CW::IY::FLY on the fly based on the
method fly 1344. The circled 8 now indicates that the pro-
ducer dependency declaration 1332 is accessed. The dashed
circled 9 in FIG. 13F now shows that the producer CW::1Y::
FLY is instantiated. The dashed circled 10 in FIG. 13F indi-
cates that the producer CW::1Y::BETA is linked in the pro-
ducer graph to indicate that producer CW::IY::FLY is a child
producer. The circled 11 in FIG. 13F indicates that the pro-
ducer CW::IY::FLY is executed and returns DEP to identify
CX::1Z::GAMMA. The remainder of FIGS. 13E-F is the
same as FIGS. 13C-D.

The on the fly generation by the runtime of the dependency
determination producer CW::IY::FLY alleviates the applica-
tion programmer from having to write explicit producer
dependency declaration code and instantiate a dependency
determination producer based thereon. Further, it allows the
application programmer to directly specify the dependency
on producer CX::1Z::GAMMA in the producer dependency
declaration statement for the method beta 1315, as opposed to
specifying the dependency determination producer CU::1V::
DELTA.

The shortcut technique can be used in a variety of situa-
tions, and may additionally have a variety of formats. For
example, while in FIGS. 13E-F the shortcut declared depen-
dency is for a non-contingent dependency (it directly identi-
fies the child producer) and is in a producer dependency
declaration statement for a method on which a dependency
determination producer is based, other situations and formats
are shown as follows: 1) FIGS. 13G-H illustrate the use of two
shortcuts, where one is contingent and is part of a producer
dependency declaration statement for a method on which a
standard producer is based and the other is non-contingent
and is part of a producer dependency declaration statement
for a method on which a dependency determination producer
is based; and 2) figures I-J illustrate the use of a shortcut that
is non-contingent and that is in a producer dependency dec-
laration statement for a method on which a standard producer
is based.

US 9,201,766 B2

55

FIG. 13G illustrates pseudo code of producer dependency
declarations for methods using a shortcut declared, contin-
gent, non-subscription producer dependency and a shortcut
declared, non-contingent, non-subscription producer depen-
dency according to one embodiment of the invention; while
FIG. 13H is a block diagram of producers illustrating an
exemplary shortcut declared, contingent, non-subscription
producer dependency and a shortcut declared, non-contin-
gent, non-subscription producer dependency according to
one embodiment of the invention. FIG. 13G shows: 1) a
producer dependency declaration statement 1345 for the
method alpha 1305, where the producer dependency declara-
tion statement 1345 includes a shortcut declared, contingent
producer dependency to a producer <P>GETC1::11::M1;2) a
producer dependency declaration statement 1350 for a
method flyl 1355, where the producer dependency declara-
tion statement 1350 includes a shortcut declared, non-contin-
gent producer dependency to a producer C0::10:: GETC1, and
where the method flyl 1355 returns as an argument an
instance of DEP; 3) the producer dependency declaration
statement 1332 for a method fly2 1362, where the method fly2
1362 returns as an argument an instance of DEP; and 4) the
producer dependency declaration statement 1365 for a
method getcl 1370, where the method getc1 1370 returns C1
with a value of CX or CY.

The method FLY1 1355 and its producer dependency dec-
laration statement 1350 are provided by the runtime respon-
sive to the shortcut declared dependency <P>GETC1::11::M1
(which indicates that the shortcut is being used for the class
key). The method flyl 1355 includes producer dependency
declaration code 1360 that sets DEP.TYPE to non-subscrip-
tion downwardly declared, sets DEP.PROD to producer CX::
11::M1 or CY::11::M1 depending on the value of C1 output by
the producer C0::10:: GETC1, and returns DEP. While in the
example of FIG. 13H, a <P>is used to designate that it is the
class key of the producer that is contingent, alternative
embodiments of the invention could use other syntaxes. Fur-
ther, while in the example of FIG. 13H, a <P> is used to
designate that it is the class key of the producer that is con-
tingent, one embodiment of the invention supports having
more and/or different ones of the identifiers that make up the
producer key be indicated as contingent in this manner.

In FIG. 13G, a circled 1 indicates that the producer depen-
dency declaration 1345 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305 as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13H shows that
the producer C0::10::ALPHA is instantiated based on the
method alpha 1305. A circled 3 in FIG. 13G indicates that the
shortcut declared producer dependency is processed to deter-
mine the producer dependency and the runtime provides the
method fly1 1355; and as a result, a circled 4 indicates that the
producer dependency declaration 1350 is accessed.

A circled 5 in FIG. 13H shows that a producer C0::10::
FLY1 is instantiated as a dependency determination producer
1380. A circled 6 in FIG. 13H indicates that the producer
C0::10:: ALPHA is linked in the producer graph to indicate
that producer C0::10::FLY1 is a child producer. A circled 7 in
FIG. 13G indicates that the shortcut declared producer depen-
dency to producer C0::10::GETC1 is processed to determine
the producer dependency and the runtime provides the
method fly2 1362, and as a result, a circled 8 indicates that the
producer dependency declaration 1332 is accessed. A dashed
circled 9 in FIG. 13H shows that a producer C0::10::FLY2 is
instantiated. A dashed circled 10 in FIG. 13H indicates that

10

15

20

25

30

35

40

45

50

55

60

56

the producer C0::10::FLY1 is linked in the producer graph to
indicate that producer C0::10::FLY?2 is a child producer.

A circled 11 in FIG. 13H indicates that the producer CO0::
10::FLY2 is executed and returns DEP to identify producer
C0::10::GETC1. A circled 12 indicates that the producer C0::
10::GETC1 is instantiated, while a circled 13 indicates that
the producer C0::10::GETC1 being linked in the producer
graph to the producer C0::10::FLY1 as a child producer.

In FIG. 13H, a circled A indicates that the producer CO0::
10::GETC1 is executed and returns C1=CX to producer C0::
10::FLY1, while a circled B indicates that the producer C0::
10::FLY1 is executed and returns DEP to identify producer
CX:J1::M1, a circled C indicates that the unresolved remain-
der (method flyl) 1390 is now resolved, and a circled D
indicates the linking of the producer C0::10:: ALPHA to the
producer CX:J1::M1. In FIG. 13H, producers C0::10::
GETC1, C0::10:: ALPHA, and CX::11::M1 are standard pro-
ducers 1385.

The on the fly generation by the runtime of the dependency
determination producer C0::10::FLY1 and C0::10::FLY?2 alle-
viates the application programmer from having to write
explicit producer dependency declaration code and instanti-
ate dependency determination producers based thereon. Fur-
ther, it allows the application programmer to directly specify
the contingent dependency on a producer **::11::M1 through
the method getC1 in the producer dependency declaration
statement for the method alpha 1305, as opposed to specify-
ing the dependency determination producer CW::1Y::BETA.

FIG. 131 illustrates pseudo code of producer dependency
declarations for methods using a shortcut declared, non-dy-
namic (non-contingent, non-subscription) producer depen-
dency according to one embodiment of the invention; while
FIG. 13J is ablock diagram of producers illustrating an exem-
plary shortcut declared, non-dynamic producer dependency
according to one embodiment of the invention. FIG. 131
shows: 1) a producer dependency declaration statement 1372
for a method alpha 1305, where the producer dependency
declaration statement 1372 includes a shortcut declared pro-
ducer dependency to a producer 10; and 2) a producer depen-
dency declaration statement 1374 for a method fly 1376,
where the producer dependency declaration statement 1374 is
empty, and where the method fly 1376 returns as an argument
an instance of DEP. The method fly 1776 and its producer
dependency declaration statement 1374 are provided by the
runtime responsive to the shortcut declared dependency. The
method fly 1376 includes producer dependency declaration
code 1378 that sets DEP.TYPE to non-subscription down-
wardly declared, sets DEP.PROD to producer 10, and returns
DEP.

In FIG. 131, a circled 1 indicates that the producer depen-
dency declaration 1372 is accessed (e.g., as a result of desig-
nation of a producer based on the method alpha 1305 as a
producer of interest, as a result of automated discovery of a
producer based on the method alpha 1305 as a progeny of a
producer of interest, etc.). A circled 2 in FIG. 13] shows that
a producer CO0::10::ALPHA is instantiated based on the
method alpha 1305. A circled 3 in FIG. 131 indicates that the
shortcut declared producer dependency is processed to deter-
mine the producer dependency and the runtime provides the
method fly 1376; and as a result, a circled 4 indicates that the
producer dependency declaration 1374 is accessed. A dashed
circled 5 in FIG. 13] shows that a producer C0::10::FLY is
instantiated as a dependency determination producer 1380. A
dashed circled 6 in FIG. 13] indicates that the producer C0::
10::ALPHA is linked in the producer graph to indicate that
producer C0::10::FLY is a child producer.

US 9,201,766 B2

57

A circled 7 in FIG. 13] indicates that the producer C0::10::
FLY is executed and returns DEP to identify producer 10. A
circled 8 indicates producer 10 is instantiated, while a circled
9 indicates the producer C0::10:: ALPHA being linked in the
producer graph to indicate that producer 10 is a child pro-
ducer. InFIG. 13J, producer C0::10:: ALPHA and producer 10
are standard producers 1385.

It should be understood that the runtime programmer, in
one embodiment of the invention, writes a single fly method
to interpret all supported syntaxes and combinations (e.g., the
method fly 1334, the method fly1 1355, the method fly2 1362,
the method fly 1376) and includes it in the runtime. This not
only allows applications programmers to avoid writing code
for dependency determination producers where a fly method
may be used, the runtime programmer need only write the
generic fly method (the single fly for all supported situations)
once. Further, it should be understood that shortcut declared
dependencies allow for a runtime that uses dependency deter-
mination producers while at the same time allowing an appli-
cation programmer to indicate standard producers in the pro-
ducer dependency declarations (e.g., FIGS. 13G-J).

Method Tracking Structure

Referring back to the method tracking structure of FIG.
11D, exemplary contents of the ArgumentDependencies col-
umn 1194, FieldDependencies column 1196, SequencingDe-
pendencies column 1195, UpwardDependencies column
1193, and WeaklyConstrainedDependencies column 1199
used in some embodiments of the invention will now be
described. Specifically, the ArgumentDependencies column
1194 stores a collection of items, one for each ArgumentDe-
pendency. In one embodiment of the invention, each item
includes the following: 1) the argument ID; 2) a class key
nature identifier, being one of explicit class, same class, and
contingent class; 3) an explicit class key identifier populated
when the class key nature identifier indicates explicit class; 4)
contingent class determination method key identifier popu-
lated when the class key nature identifier indicates contingent
class; 5) an instance key nature identifier, being one of explicit
instance, same instance, and contingent instance; 6) an
explicit instance key identifier populated when the instance
key nature identifier indicates explicit instance; 7) contingent
instance determination method key identifier populated when
the instance key nature identifier indicates contingent
instance; 8) a method key nature identifier, being one of
explicit method, same method, and contingent method; 9) an
explicit method key identifier populated when the method key
nature identifier indicates explicit method; 10) contingent
method determination method key identifier populated when
the method key nature identifier indicates contingent method;
and 11) a shortcut identifier that indicates if the producer
dependency declaration for the argument in the producer
dependency declaration statement contained an indication of
shortcut (i.e., the producer dependency declaration statement
directly identifies a standard child producer instead of a
dependency determination producer).

The “ . . . explicit” indication of the various key nature
identifiers is used where the explicit key is provided for the
producer dependency in the producer dependency declaration
statement. By way of example, the producer dependency
“CW:uIY::BETA” of the producer dependency declaration
statement 1300 of FIG. 13A provides an explicit class,
instance, and method key.

In some embodiments of the invention, a shorthand tech-
nique is supported for the producer dependency declaration
statements such that: 1) if a class is not provided for a given
producer dependency, then the same class as the parent pro-
ducer is used; and 2) if a class and instance are not provided

10

15

20

25

30

35

40

45

50

55

60

65

58

for a given producer dependency, then the same class and
instance as the parent producer are used. In other embodi-
ments of the invention, a syntax is used to allow any combi-
nation of class, instance, and method, to be the same as the
parent (with the exception of all being the same) (e.g., a
separator is used to designate each of class, instance, and
method, and an absence of such a separator indicates same as
parent—by way of specific example, the syntax may be
“HC:”, “#1:”, and “#M:”, such that a producer dependency in
a producer dependency declaration statement may be
#C:“class key”:#l:“instance key”:#M:“method key”.)
(where quotes indicate a placeholder for a value or variable)
The“...same” indication of the various key nature identifiers
is used where this shorthand technique is used in the producer
dependency declaration statement.

As previously indicated, in some embodiments of the
invention an indication of a contingent producer dependency
is supported through a syntax (e.g., <P>) used in the producer
dependency declaration statement itself (see 1345 of FIG.
13@G), and such syntax can be used on one or more of the class,
instance, and method of a producer dependency. The “ . . .
contingent” indication of the various key nature identifiers is
used to identify when such a contingent producer dependency
occurs, while the “contingent . . . determination method key
identifier” indicates the method key of the child producer (the
class and the instance are the same as that of the parent
producer). By way of example, the producer dependency
“<P>GETC1::11::M1” for the producer dependency declara-
tion 1345 of FIG. 13G provides a contingent class (where the
contingent class determination method key is GETC1), an
explicit instance key, and an explicit method key.

The SequencingDependencies column 1195, the Upward-
Dependencies column 1193, and the WeaklyConstrainedDe-
pendencies column 1195 each store a collection of items, one
for each SequencingDependency, UpwardDependency, and
WeaklyConstrainedDependency. In one embodiment of the
invention, each such item has the same structure as an item of
the collection for the ArgumentDependencies, except that it
does not include an argument ID. Further, although FIGS.
13A-J illustrated non-subscription downwardly declared
dependencies originating from dependency determination
producers, it should be understood that in the case of an
upwardly declared dependency or weakly constrained depen-
dency the dependency determination producer may return the
other dependencies discussed with reference to FIG. 7F-G.

The FieldDependencies column 1196 stores a collection of
items, one for each FieldDependency. While in one embodi-
ment of the invention each item includes the property method
key, in alternative embodiments of the invention may have the
same structure as an item of the collection from Sequenc-
ingDependencies.

Subscription Dependencies

In one embodiment of the invention, both non-subscription
and subscription producer dependencies are supported. When
a subscription producer dependency is declared for a given
method and a given producer is instantiated from that given
method, the runtime can resolve during run time (based upon
the existence of other producers) the set of zero or more
producers that meet the criteria of the subscription. While one
embodiment of the invention supports both non-subscription
and subscription producer dependencies, alternative embodi-
ments support only non-subscription. In addition, while in
one embodiment of the invention two types of subscription
dependencies are supported (absorbing and sticky), alterna-
tive embodiments of the invention support more, less, and/or
different types of subscription producer dependencies.

US 9,201,766 B2

59

FIGS. 14A-C are block diagrams illustrating absorbing
and sticky subscriptions according to one embodiment of the
invention. FIG. 14A is a block diagram of an example of the
subscription log 1250 of FIG. 12 according to one embodi-
ment of the invention. While FIG. 14A illustrates this log
structure as a table, it should be understood that any suitable
data structure may be used (e.g., a hash map). FIG. 14B is a
block diagram of exemplary producers illustrating a non-
contingent, absorbing subscription producer dependency
according to one embodiment of the invention. FIG. 14C is a
block diagram of exemplary producers illustrating a non-
contingent, sticky subscription producer dependency accord-
ing to one embodiment of the invention. Two rows are shown
in the table of FIG. 14A populated with content used in the
examples of FIGS. 14B-C. Circled numbers are used in FIGS.
14B-C to illustrate the order in which operations are per-
formed according to one embodiment of the invention.

In FIG. 14A, a subscriber’s producer key column 1400, a
subscription type column 1405, and a subscription criteria for
trigger producers column 1410 are shown to respectively
store the content corresponding to the column name. In addi-
tion, FIG. 14A shows a parent link mode column 1425 to store
the link mode for the parent producer of the subscription
dependency; this information will be described in more detail
with regard to FIGS. 14B-C.

FIG. 14A also shows a matching producers column 1415
and a completed column 1420 used for absorbing subscrip-
tions. The matching producers column 1415 is used to store
the producer keys of the trigger producers that meet the sub-
scription criteria of the absorbing subscription, while the
completed column 1420 is used to track whether the absorb-
ing subscription has been completed during a given execution
of'the current set of producer graphs. The matching producers
column 1415 and the completed column 1420 provide an
additional optional optimization that allows for the work of
scanning the instantiated producers to be divided between the
automated producer graph generation and the producer graph
execution as described later herein.

FIG. 14A also shows a parent class column 1430, a parent
method column 1435, and a parent instance column 1437
used for sticky subscriptions. The parent class column 1430,
the parent method column 1435, and the parent instance
column 1437 respectively store the class key, method key, and
instance key of the parent producer to be created for the sticky
subscription. In addition, FIG. 14A shows a dependency
determination producer reference column 1421 store a refer-
ence to the dependency determination producer creates the
subscription.

Absorbing Subscription

In an absorbing subscription producer dependency, the
dependency is to the collection of all producers of the current
producer graph(s) structure that meet the absorbing subscrip-
tion criteria. With reference to FIG. 14B, a circled 1 indicates
aproducer 1450 is instantiated (e.g., as a result of designation
of the producer 1450 as a producer of interest, as a result of
automated discovery of the producer 1450 as a progeny of a
producer of interest, etc.). The producer 1450 is based on a
method for which the producer dependency declaration
includes a producer dependency (e.g., with argument ID X).
A circled 2 indicates the producer dependency of the producer
1450 is processed to identify a producer 1455.

A circled 3 indicates that the producer 1450 is linked (in the
above example, through argument ID X) in the producer
graph to producer 1455 as a child producer. A circled 4
indicates execution of the producer 1455. The producer 1455
is a dependency determination producer that includes pro-
ducer dependency declaration code indicating an absorbing

10

15

20

25

30

35

40

45

50

55

60

65

60

subscription producer dependency and indicating the absorb-
ing subscription criteria. As such, the execution of the pro-
ducer 1455 results in populating the subscription log. With
regard to the example in the first row of FIG. 14A, the sub-
scriber’s producer key column 1400, the subscription type
column 1405, the subscription criteria for trigger producers
column 1410, the parent link mode column 1425, and the
dependency determination producer reference column 1421
are respectively populated with the producer key of the pro-
ducer 1450, an indication that the subscription is of the
absorbing type, the absorbing subscription criteria contained
within the producer 1455, the link mode of the producer 1450
linked to the producer 1455 (which, in the case of an absorb-
ing subscription will be an argument dependency and include
an argument ID, but whose sticky indicator will indicate not
sticky—in the above example, argument ID X), and a refer-
ence to the producer 1455 (the dependency determination
producer that cerates the subscription).

Circled 5A-N indicates the instantiation of producers
1460A-N. In this example, the producers 1460A-N meet the
absorbing subscription criteria, and thus are trigger produc-
ers. As such, circled 6A-N indicates the linking of the pro-
ducer 1450 to the producers 1460A-N (in the above example,
through argument ID X). A circled 7 indicates that the absorb-
ing subscription dependency is completed for the current
execution of the producer graph(s), and the producer 1450 is
then executed.

In one embodiment of the invention, the absorbing sub-
scription criteria can be one or more of any of the keys making
up a producer key. Thus, in embodiments of the invention
where a producer key comprises a class key, instance key, and
a method key, the subscription criteria could be one or more
such keys. By way of example with reference to FIG. 11C; a
scan through the instantiated producers for those that meet the
subscription criteria is a scan through one or more of the first
three columns of the producer graph(s) structure to determine
if the keys of the instantiated producers match the keys of the
absorbing subscription criteria. While in one embodiment of
the invention the absorbing subscription criteria can be one or
more of any of the keys making up a producer key, in alter-
native embodiments of the invention the absorbing subscrip-
tion criteria is limited to a subset of the keys making up a
producer key.

Sticky Subscription

In a sticky subscription producer dependency, the depen-
dency causes a parent producer to be instantiated for each
producer that meets the sticky subscription criteria. With
reference to FIG. 14C, a circled 1 indicates a producer 1470 is
instantiated (e.g., as a result of designation of the producer
1470 as a producer of interest, as a result of automated dis-
covery of the producer 1470 as a progeny of a producer of
interest through a sequencing dependency (e.g., as a result of
a SequencingDependency or WeaklyConstrainedDepen-
dency, etc.). The producer 1470 is a dependency determina-
tion producer that includes producer dependency declaration
code indicating a sticky subscription, the sticky subscription
criteria for the trigger producers, and the sticky subscription
characteristics for the parent producer to be created.

Execution of the producer 1470 results in populating the
subscription log. With regard to the example in the second
row of FIG. 14 A, the subscriber’s producer key column 1400,
the subscription type column 1405, and the subscription cri-
teria for trigger producers column 1410 are respectively
populated with the producer key of the producer 1470, an
indication that the subscription is of the sticky type, and the
sticky subscription criteria for the trigger producers con-
tained within the producer 1470. In addition, the parent class

US 9,201,766 B2

61

column 1430, the parent method column 1435, the parent
instance column 1437, and the link mode column 1425 ofthe
parent producer to be linked to the trigger producer are popu-
lated with the sticky subscription characteristics for the par-
ent producer to be created—in this embodiment of the inven-
tion, respectively the class of the parent producer to be
instantiated, the method of the parent producer to be instan-
tiated, the instance of the parent producer to be instantiated (if
left blank, would be equal to the instance key of the trigger
producer), the link mode (which, in the case of sticky sub-
scription, may be: 1) argument, field, or sequencing depen-
dency; 2) argument ID if an argument dependency—the argu-
ment ID of the parent producer to be linked to the trigger
producer (e.g., argument IDY). In addition, the dependency
determination producer reference column 1421 is populated
with a reference to the dependency determination producer
that created the subscription (in FIG. 14C, the producer
1470).

With reference to FIG. 14C, a circled 2 indicates a producer
1475 is instantiated (e.g., as a result of designation of the
producer 1475 as a producer of interest, as a result of auto-
mated discovery of the producer 1475 as a progeny of a
producer of interest, etc.). In addition, it is determined if the
producer 1475 meets the sticky subscription criteria for a
trigger producer. A circled 3 indicates that responsive to the
trigger producer 1475, a producer 1480 is instantiated based
on the sticky subscription characteristics for the parent pro-
ducer to be created. With reference to the exemplary second
row of FIG. 14C, the class key, method key, instance key, and
link mode are accessed from the parent class column 1430,
the parent method column 1435, the instance column 1437,
and the parent link mode column 1425, respectively. The
parent producer has a producer key comprising the accessed
class key, the accessed instance key (if left blank, the instance
key of the trigger producer (in F1G. 14C, the producer 1475)),
and the accessed method key—in the example of FIG. 14C,
this is producer 1480. A circled 4 indicates that the instanti-
ated parent producer 1480 is linked in the producer graph to
the child trigger producer 1475 through the accessed link
mode (in the above example, link mode type=argument
dependency; link mode argument ID=Y). Also at circled 4, in
the case of an argument dependency, the sticky indicator is set
to indicate sticky—that the producer dependency in that posi-
tion of the producer dependency declaration statement for the
method on which the instantiated parent producer 1480 is
based should be ignored for the producer 1480—this prevents
the link created by the sticky subscription producer depen-
dency from being overwritten by later automated producer
graph generation operations.

In one embodiment of the invention, the sticky subscription
criteria for trigger producers can be one or more of the keys
making up a producer key. Thus, in embodiments where a
producer key comprises a class key, instance key, and a
method key, the sticky subscription criteria for the trigger
could be one or more of the class, instance, and method keys.
By way of example with reference to FIG. 11C, a scan
through the instantiated producers for those that meet the
sticky subscription criteria for trigger producers is a scan
through one or more of'the first-third columns of the producer
graph(s) structure to determine if the keys of the instantiated
producers match the keys of the sticky subscription criteria
for trigger producers. While in one embodiment of the inven-
tion the sticky subscription criteria for trigger producers can
be one or more of the keys making up a producer key, in
alternative embodiments of the invention the absorbing sub-
scription criteria can be a more limited number of the keys
making up a producer key.

10

15

20

25

30

35

40

45

50

55

60

65

62

FIGS. 14D-E illustrate the choice of a parent producer
based upon a parent dependency determination producer
according to one embodiment of the invention. While FIGS.
14D-E are described with reference to argument dependen-
cies, embodiments of the invention may support the use of
sequencing and field dependencies.

FIG. 14D illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a sticky subscription according to one embodiment of the
invention. Like FIG. 14C, FIG. 14D shows the sticky sub-
scription producer 1470 and the trigger producer 1475; how-
ever, rather than the producer 1480, FIG. 14D shows a depen-
dency determination producer 1480 created through the
sticky subscription of sticky subscription producer 1470. Fur-
ther, FIG. 14D shows that the link mode of the sticky sub-
scription is argument dependency, argument ID=X, and
sticky indicator=sticky. As illustrated by the dashed curved
line from the producer 1475 to the dependency determination
producer 1480, the DEP returned by the dependency deter-
mination producer may be based on the output of the producer
1475 itself (the argument of argument ID=X). In FIG. 14D,
the dependency determination producer 1480 returns an non-
subscription upwardly declared producer dependency on a
producer 1482, with the link mode indicating argument
dependency and argument ID=Y. While the argument IDs of
X andY are used in FI1G. 14D to show that they may differ, it
should be understood that they may be equal.

FIG. 14E illustrates the choice of a parent producer based
upon a parent dependency determination producer created by
a child dependency determination producer, which child
dependency determination producer is linked by a sequenc-
ing dependency, according to one embodiment of the inven-
tion. FIG. 14E is similar in structure to FIG. 14D; specifically,
the producer 1475, 1480, and 1482 are replaced with produc-
ers 1486, 1496, and 1498. However, rather than the sticky
subscription producer 1470 creating the link between the
producers 1480 and 1475, the producer 1486 has a sequenc-
ing dependency on a dependency determination producer
1494 (e.g., created through an UpwardDependency or a
WeaklyConstrainedDependency), which creates the depen-
dency determination producer 1496 through a non-subscrip-
tion upwardly declared dependency.

It is worth nothing that sticky subscriptions and non-sub-
scription upwardly declared dependencies (e.g., created
through UpwardDependencies and/or WeaklyConstrained-
Dependencies) cause a bottom up building of a producer
graph (as opposed to the top down building described earlier
herein). Further, this bottom up building is not limited to the
building of a single level, but may be multiple level (e.g., if,
due to a sticky subscription or non-subscription upwardly
declared dependency, a parent producer is instantiated, that
same parent producer may also be a trigger producer for a
sticky subscription or may include a non-subscription
upwardly declared dependency and cause the instantiation of
another parent producer, and so on). In this sense, sticky
subscriptions, as well as non-subscription upwardly declared
dependencies, reverse producer graph building.

While in some embodiments of the invention the parent
producers identified by the sticky subscription characteristics
are standard producers (see FIG. 14C), alternative embodi-
ments may be implemented to support the identification of
other types of producers. For example, in embodiments of the
invention that allow the sticky subscription characteristics to
identify a dependency determination producer (see FIG.
14D), such a dependency determination producer may access
the output of the trigger producer and may, based on that
output, trigger the creation of a particular producer as a parent

US 9,201,766 B2

63

producer that needs to stick on the child (this parent producer
might already exist or not; If it already exists, it is simply
linked, and the child producer is added to its argument; If is
does not exist yet, it is created). The case where the depen-
dency determination producer returns a constant producer
mimics an absorbing subscription. The case where the depen-
dency determination producer returns a producer whose
instance key is unique per trigger producer (e.g., returns a
producer whose instance key is the producer key of the trigger
producer) results in a separate parent producer per child pro-
ducer and is referred to as a pure sticky subscription. The case
where the dependency determination producer returns an
instance key which is neither constant nor unique per trigger
producer can mix the behaviors of pure sticky subscriptions
and absorbing subscriptions and is referred to as a non-pure
sticky subscription.

Exemplary Advantages

As previously described, in one embodiment of the inven-
tion, producer dependencies are declared for methods as a
way to specify method invocation sequencing using the
appropriate instances (where the appropriate instances
include the instances to use as arguments, the instances to be
used by instance methods, and the meta class instances used
by class methods) without using manual invocation sequenc-
ing code; effectively, the work of generating some or all of
manual invocation sequencing code is replaced with: 1) work
done by the application programmer to write the producer
dependency declarations; and 2) work done by the runtime to
discover and build the producer graph(s) and execute the
producers of that producer graph(s). Although the effort to
write the runtime is relatively great, it needs only be written
once in that it can be used to execute any object-oriented
applications written for the runtime; in contrast, for a typical
application, the effort to write the producer dependency dec-
larations is relatively low in comparison to writing manual
invocation sequencing code.

Non-dynamic producer dependencies provide for a way to
specify unconditional method invocation sequencing code,
and thus avoid the need for writing unconditional manual
invocation sequencing code. Contingent producer dependen-
cies provide for a way to specify conditional processing, and
thus replace the need for writing conditional manual invoca-
tion sequencing code. Supporting producer dependencies that
allow for a collection of producers to be returned provides for
a way to specify the filling of a collection before it is passed
as a parameter, and thus avoid the need for writing multiple
calls in manual invocation sequencing code to fill a collection
before it is passed as a parameter. Supporting subscriptions
provides an environment in which a programmer need not
write specific listening code for each type of object to be
listened to (e.g., in a producer graph oriented programming
spreadsheet, an absorbing subscription may be used to com-
pute an average of a range of cells (each cell being a producer)
by having the absorbing subscription criteria identify cells
within the range, and re-computing the average every time a
new producer is added to the absorbing subscription; in a
producer graph oriented programming spreadsheet, a sticky
subscription may be used as a currency converter by having
the sticky subscription criteria identify cells holding currency
content and sticky subscription characteristics of sticky pro-
ducer(s) to be instantiated that perform currency conversion
(the producers (holding the converted amounts) created by
the sticky subscriptions would then be available for display in
other cells).

40

45

64

Operation

New Instance Commands

FIG. 15 is a flow diagram for instantiating new instances
according to one embodiment of the invention. As previously
described with reference to FIG. 10, the new class module
1095 of FIG. 10 may be implemented as part of the new
instance module 1098. The flow diagram of FIG. 15 assumes
such an embodiment and is performed by the new instance
module 1098; the part of the flow diagram of FIG. 15 repre-
senting the new class module 1095 is shown as the dashed
block 1580, which includes blocks 1540 and 1550.

Responsive to a new instance command (block 1510), con-
trol passes to block 1520. In block 1520, it is determined if the
instance already exists. If not, control passes to block 1530,
otherwise, the instance need not be instantiated and control
passes to block 1570 in which the flow diagram ends. In one
embodiment that supports instance keys, block 1520 is per-
formed by accessing the instance tracking structure 1065 of
FIG. 10 for the instance key (and class key if instance keys
need not be unique across classes) provided as part of the new
instance command.

In block 1530, it is determined if the class definition of the
instance is already loaded. If not, control passes to block
1540; otherwise, control passes to block 1560. In one
embodiment that supports class keys, block 1540 is per-
formed by accessing the class tracking structure 1092 of FIG.
10 for the class key provided as part of the new instance
command.

In block 1540, the class is loaded and control passes to
block 1550. In block 1550, the class definition would be
stored according to the class key and introspected, including
any producer dependency declaration statements (stored by
method key within the class—see FIG. 11D). From block
1550, control passes to block 1560. With reference to FIG. 10,
the following is performed in blocks 1540 and 1550: 1) the
class would be loaded from the class definitions that include
business logic 1010 into the classes 1054 (this loading results
in the methods and producer dependency declarations of the
class being stored in the method and producer dependency
declarations 1056); 2) the class would be added to the class
tracking structure 1092; and 3) the methods would be added
to the method tracking structure 1058. Further, the output
classes of the methods would be loaded.

In block 1560, an instance of the class would be instanti-
ated and stored according to the instance key. With reference
to FIG. 10, the instance would be instantiated into the
instances 1052; and the instance would be added to the
instance tracking structure 1065. From block 1550, control
passes to block 1570 in which the flow diagram ends. In some
embodiments of the invention in which an object-relational
mapping technique is used, data may be loaded from an
external data source to populate the field of the instance as
part of block 1560.

In some embodiments of the invention, classes and
instances may be loaded/instantiated in a manner in which the
runtime with producer graph oriented programming support
is not aware (e.g., in FIG. 9A, if the runtime 915 loads/
instantiates without runtime 910 being aware). In such cases,
embodiments of the invention which also support the instance
key being an instance of the class InstanceKey (which holds
two elements: an instance key nature indicating if the key
identifier is a reference to the instance or another object (such
as a string), and a key identifier which can either be a refer-
ence to the instance, or another object (such as a string)),
blocks 1520 and 1530 inquire whether the instance and class
were instantiated/loaded in a manner in which the runtime
with producer graph oriented programming support is aware.

US 9,201,766 B2

65

In cases where the runtime with producer graph oriented
programming support is not aware of an already loaded class,
the class would not be loaded, but the class would be added to
the class tracking structure 1092 and the methods would be
added to the method tracking structure 1058. In cases where 5
the runtime with producer graph oriented programming sup-
port is not aware of an already instantiated instance, the
instance would not be instantiated, but the instance would be
added to the instance tracking structure 1065.

New Producer and Unoverride Commands 10

FIG. 16 is a flow diagram for instantiating new producers
and unoverriding producers according to one embodiment of
the invention. With reference to FIG. 10, the flows of FIG. 15
are performed by the automated producer graph generation
module 1040 and the override producer module 1045 (or, as 15
described with reference to alternative embodiments regard-
ing FIG. 10, the module that handles overrides and unover-
rides).

Responsive to a new producer command (block 1600),
control passes to block 1605. In one embodiment of the 20
invention, a new producer command may execute responsive
to a variety of situations. Table 2 below identifies the various
situations and parameters passed according to one embodi-
ment of the invention.

TABLE 2

66

calling the flow diagram of FIG. 15 using the instance key
from the producer key in the called producer column of Table
2.

In block 1615, the class definition of the instance of the
producer is accessed and control passes to block 1620. With
reference to FIG. 10, block 1615 is performed by using the
class key from the producer key in the called producer column
of Table 2 to access the appropriate one of the classes 1054
according to the class tracking structure 1092.

In block 1620, the method and producer dependency dec-
laration statement of the producer is accessed and control
passes to block 1625. With reference to FIG. 10, block 1620
is performed by using the method key from the producer key
in the called producer column of Table 2 to access the appro-
priate one of the methods and producer dependency declara-
tions 1056 from the class located in block 1615.

Inblock 1625, the producer is added to the producer graph
and control passes to block 1630. With reference to the
embodiment of the invention in FIG. 11C, the first three
columns are populated.

In block 1630, for each registered subscription, the sub-
scription filtering criteria is processed to determine if the
producer matches. With reference to the embodiment of the
invention in FIG. 14A, a subscription is considered registered

Called Producer (to
Caller be created if does

Dependency
determination
producer
reference

Situations Producer not already exist) Call type Link mode

Producer of N/A Producer of interest Of interest ~ N/A

interest to be created

Non- Parent Child Non- Caller parent

subscription subscription producer link

downwardly downwardly mode

declared declared

Sticky Child Parent (parent Sticky Called parent

subscription class, method, and producer link
instance key from mode from sticky
sticky subscription subscription
characteristics for characteristics for
parent producer to parent producer
be created; if to be created

instance key is
blank, instance key
of existing child
caller producer)

Override N/A Producer to be Overridden N/A
overridden

Non- Child Parent Non- Called parent

subscription subscription producer link

upwardly upwardly mode

declared declared

N/A

Dependency
determination
producer
providing the
dependency
Dependency
determination
producer
providing the
dependency

N/A

Dependency
determination
producer
providing the
dependency

In block 1605, it is determined if the producer already
exists. If not, control passes to block 1610; otherwise, control 55
passes to block 1670. Block 1605 is performed by accessing
a class, instance, and method identified (e.g., by key and/or
reference) as part of the new producer command. In one
embodiment that supports producer keys, block 1605 is per- 6
formed by accessing the producer graph(s) structure 1060 of
FIG. 10 for the producer key provided as part of the new
producer command (the producer key in the called producer
column of Table 2).

In block 1610, the new instance module is called with a 65
new instance command and control passes to block 1615. In
one embodiment of the invention, block 1610 is performed by

when it is added to the subscription log. Exemplary opera-
tions to register subscription are described later herein. Block
1630 is an optional optimization that allows for the work of
scanning the instantiated producers to be divided between
automated producer graph generation and producer graph
execution. As such, an alternative embodiment of the inven-
tion may not perform block 1630.

In block 1635, the producer is linked into the producer
graph(s) if called due to a dependency. From block 1635,
control passes to block 1640. The manner of performing
block 1635 depends on the situation which resulted in the new
producer command being executed (see FIG. 20). For
example, if the situation is that this is a producer of interest or
a producer being overridden, then it was not called due to a

US 9,201,766 B2

67

dependency and nothing is done. In contrast, if the situation is
non-subscription downwardly declared, then it was called
due to a non-subscription downwardly declared dependency;
and with reference to the embodiment of the invention in FIG.
11C, the following is performed: 1) the parent producer(s)
link(s) in column 1150 of'the called child producer (the called
producer column of table 2) is modified with a parent pro-
ducer reference to the row of the parent caller producer (the
caller producer column of table 2) and the dependency deter-
mination producer reference (the dependency determination
producer reference column of Table 2); and 2) the child pro-
ducer(s) link(s) column 1160 of the row of the parent caller
producer (the caller producer column of table 2) is modified
with a child producer reference to the row of the called child
producer (the called producer column of Table 2), a depen-
dency determination producer reference (the dependency
determination producer reference column of Table 2), and a
link mode (set according to the link mode column of Table 2).

In contrast, if the situation is a sticky subscription, then it
was called due to a trigger producer being identified; and with
reference to the embodiment of the invention in FIG. 11C, the
following is performed: 1) the parent producer(s) link(s) col-
umn 1150 of the caller child producer (the caller producer
column of table 2) is modified with a parent producer refer-
ence to the row of the parent called producer (the called
producer column of table 2) and the dependency determina-
tion producer reference (the dependency determination pro-
ducer reference column of Table 2); and 2) the child
producer(s) link(s) 1160 of the row of the parent called pro-
ducer (the called producer column of table 2) is modified with
a child producer reference to the row of the caller child
producer (the caller producer column of Table 2), a depen-
dency determination producer reference (the dependency
determination producer reference column of Table 2), a link
mode (set according to the link mode column of Table 2) and
a sticky indicator set to indicate sticky. In this respect, the
situation of a non-subscription upwardly declared is handled
is a similar fashion to sticky subscription.

In block 1640, the producer is marked as unexecuted and
control passes to block 1645. With reference to the embodi-
ment of the invention in FIG. 11C, the incremental execution
marking column 1180 of the appropriate row is populated
with an unexecuted indication.

In block 1645, it is determined if the producer has any
dependencies and is not overridden. If so, control passes to
block 1650; otherwise, control passes to block 1665. Block
1645 is performed by checking the producer dependency
declaration accessed in block 1620 and the call type column
of Table 2.

In block 1650, for each dependency in the producer depen-
dency declaration that is to be resolved now, the number of
producers is determined and a new producer command is
invoked for each. From block 1650, control passes to block
1655. Different embodiments of the invention determine dif-
ferent types of dependency at different times; the manner of
performing block 1650 in one exemplary embodiment of the
invention will be described later herein.

In block 1655 the producer is added to the execution start
log if all its dependent producers exist and have been
executed. From block 1655, control passes to block 1660.
When, for a given producer instantiated as part of the current
iteration of this flow, block 1655 is performed, then the invo-
cation of another iteration of this flow for a producer the given
producer depends on will return the execution status of that
producer (see block 1660) (e.g., with regard to the embodi-
ment of the invention of FIG. 11C, the status from the incre-
mental execution marking column 1180 of the appropriate

10

15

20

25

30

35

40

45

50

55

60

65

68

row(s)). If all the dependent producer(s) exist and the execu-
tion status of all of the dependent producers is executed, then
the producer of the current iteration is added to the execution
start log.

In block 1660, the execution status of the producer is
returned as a parameter.

Inblock 1670, similar to block 1635, the producer is linked
into the producer graph(s) if called due to a dependency. From
block 1670, control passes to block 1675. Block 1670 may be
reached for a variety of reasons. For example, block 1670 may
be reached because the producer was previously instantiated
responsive to a producer override command, but not linked
into the producer graph. As another example, block 1670 may
be reached because the producer is already part of a producer
graph and is being added to another (e.g., previously instan-
tiated responsive to being a producer of interest, a progeny of
a producer of interest, etc.).

In block 1675, it is determined if the new producer flow is
called due to an override, to a sticky subscription dependency,
or a non-subscription upwardly declared dependency. If so,
control passes to block 1680; otherwise, control passes to
block 1660. Block 1675 is performed by checking the call
type column of Table 2 to see if this is a call for an overridden
producer, a sticky subscription dependency, or a non-sub-
scription upwardly declared dependency.

In block 1680, similar to block 1640, the producer is
marked as unexecuted and control passes to block 1665.
Block 1680 may be reached for a variety of reasons.

In block 1665, the producer is added to the execution start
log, if not already present, and control passes to block 1660.

Responsive to a producer unoverride command (block
1690), control passes to block 1695. In block 1695, the pro-
ducer is marked as not overridden and control passes to block
1640. With reference to the embodiment of the invention of
FIG. 11C, the producer output caching and override producer
output indications column 1170 of the row of the producer are
accessed and altered to indicate that the producer is no longer
overridden. Continuing this flow, block 1640 would lead to
block 1645, and if the producer had any dependencies, to
block 1650, which would cause the producer graph under the
producer to be discovered and built if it was not already. If the
producer graph under the producer is already discovered and
built, then the invoking of the new producer command will
result in flows going from 1600, to 1605, to 1670, and so on;
further, the returning of the execution status of the producers
of'the graph under the producer in block 1660 will determine
if the producer is added to the execution start log in block
1655. However, if the producer graph under the producer is
not discovered and built, then the invoking of the new pro-
ducer command will result in it being discovered and build
with flows going from 1600, to 1605, to 1610, and so on.

FIG. 17 is a flow diagram for block 1650 of FIG. 16
according to one embodiment of the invention. Thus, control
flows from block 1645 to block 1700 in block 1650. In block
1700, for each dependency in the producer dependency dec-
laration of the producer (one for each ArgumentDependency,
FieldDependency, SequencingDependency, UpwardDepen-
dency, and WeaklyConstrainedDependency), the following
blocks 1705-1745 are performed. With reference to the FIGS.
10 and 11D, the method tracking structure is accessed to
determine information regarding the producer dependency. It
should also be understood that blocks 1715, 1725, 1730,
1740, 1745, and 1750 are an optimization when performed
prior to execution of the producer graph.

In block 1705, it is determined if the dependency is an
argument dependency linked already due to a sticky depen-
dency. If so, control passes to block 1710 where the flow is

US 9,201,766 B2

69

complete for this dependency; otherwise, control passes to
block 1715. With regard to the embodiment of the invention
show in FIG. 11C, the sticky indicator is checked to determine
if the argument ID of this dependency is subject to a sticky
subscription argument dependency or an upwardly declared
argument dependency.

In block 1715, it is determined if the dependency is a
contingent dependency. If so, control passes to block 1720;
otherwise, control passes to block 1725. Block 1715 is per-
formed by checking the producer dependency declaration of
the child producer identified by the dependency to determine
if it is empty (the child producer is and independent pro-
ducer). With regard to FIGS. 13A-J, this would be true for
producers with dashed circled numbers (e.g., in FIG. 13D,
producer CU::IV::DELTA), but not true for the other produc-
ers (e.g., in FIG. 13D, producer CW::1Y::BETA). Thus, with
reference to FIG. 13D, block 1715 is represented by circled 1,
4, and 8. Block 1715 and the flow from it through blocks
1725-1750 is an optimization that both avoid adding/linking
the producers with dashed circled numbers to the producer
graph, as well as dividing the work of executing producers
between the automated producer graph generation and pro-
ducer graph execution.

In block 1720, a new producer command for the depen-
dency determination producer is invoked and the flow ends.
For example, with reference to FIG. 13D, block 1720 causes
what is represented by circled 5, 6, and 7.

In block 1725, the dependency determination producer is
executed and control passes to block 1730. For example, with
reference to FIG. 13D, block 1725 is represented by circled
11 (thus, the flow of FIG. 17 illustrated the previously
described embodiment in which circled 9 and 10 of FIG. 13D
are not performed).

In block 1730, it is determined if the dependency is a
non-subscription dependency. If so, control passes to block
1750; otherwise control passes to block 1740. In other words,
in block 1725, the producer dependency determination code
in the method of the dependency determination producer,
which is part of the producer dependency declaration of the
parent producer, is executed. Having executed this producer
dependency declaration code, which code would identify if
this dependency is a subscription dependency, the type of
producer dependency of the parent producer is determined.
With regard to the example in FIG. 13D, circled 11 would
result in the flow of FIG. 17 passing from block 1730 to block
1750.

In block 1750, the number of producers returned by the
execution of the dependency determination producer in block
1725 is determined and a new producer command is invoked
for each, using the arguments described in Table 2, including
the dependency determination producer reference executed
in 1725. For example, with reference to FIG. 13D, block 1750
would cause circled 12 and 13 and circled C and D.

With reference to the absorbing subscription example of
FIG. 14B, block 1725 represents circled 4; which causes the
flow to pass through block 1730 to block 1740.

In block 1740, the subscription is added to the subscription
log, and if the subscription is absorbing, it is marked as
incomplete. From block 1740, control passes to block 1745.
With reference to the embodiment of the invention shown in
FIG. 14A, the subscription log is populated with the subscrip-
tion as previously described.

In block 1745, all of the instantiated producers are scanned
to see if they match the criteria of the subscription (and thus
are a trigger producer), and any matches are processed.

FIG. 18 is a flow diagram for block 1745 of FIG. 17
according to one embodiment of the invention. Thus, control

10

15

20

25

30

35

40

45

50

55

60

65

70
flows from block 1740 to block 1800 in block 1745. In block
1800, for each instantiated producer, the following blocks
1810-1830 are performed.

In block 1810, it is determined if the producer meets the
criteria of the subscription. If so, control passes to block 1815;
otherwise, control passes to block 1830 where the flow ends
for the producer currently being processed. With reference to
the embodiments of the invention shown in FIGS. 11C and
14A, the producer graph(s) are accessed to determine whether
they include producers that meet the criteria of the subscrip-
tion.

The manner of processing a matching producer depends on
the type of subscription being processed. With reference to
block 1815, if the subscription is of the absorbing type, con-
trol passes to block 1825; otherwise, control passes to block
1820. Block 1815 would be performed responsive to the type
of subscription added in block 1740 or 2235.

In block 1825, the matching producer is added to the sub-
scription log and the producer with the absorbing subscrip-
tion is linked to the matching producer. From block 1825,
control passes to block 1830. With reference to the embodi-
ments of the invention shown in FIGS. 11C and 14A-B, the
following is performed: 1) the subscription criteria from the
subscription criteria for trigger producers column 1410 was
used in block 1810 and a matching producer was located (e.g.,
one of producer 1460A-N); 2) the matching produceris added
to the matching producer column 1415 at the row of the
subscription; and 3) the producer with the absorbing sub-
scription (e.g., producer 1450) is linked to the matching pro-
ducer (e.g., the one of the producers 1460A-N) in the pro-
ducer graph(s) structure of FIG. 11C (using the dependency
determination producer reference extracted from the depen-
dency determination producer reference column 1421 of the
subscription log 14 A for the given absorbing subscription).

In block 1820, a new producer command is invoked for the
parent producer to be created. From block 1820, control
passes to block 1830 where the flow diagram ends for the
current produced selected in block 1800. With reference to
the embodiments of the invention shown in FIGS. 14A and
14C, the following is performed: 1) the subscription criteria
from the subscription criteria for trigger producers column
1410 was used in block 1810 and a matching producer was
located (e.g., producer 1475); and 2) a new producer com-
mand is invoked with the parameters of table 2 set as follows:
a) call type is sticky subscription; b) caller producer is the
producer key of the caller child producer (e.g., producer
1475); c) called producer is the producer key of the called
parent producer to be created (e.g., producer 1480), that pro-
ducer key being formed using the parent class, instance, and
method key from the sticky subscription characteristics for
the parent producer to be created (FIG. 14A, columns 1430,
1435, and 1437) (if the instance key is empty, the instance key
of caller child producer is used); d) the link mode for the
called parent producer (FIG. 14A, link mode column 1425);
and e) the dependency determination producer reference
extracted from the dependency determination producer ref-
erence column 1421 of the subscription log 14 A for the given
sticky subscription.

FIG. 19 is a flow diagram for block 1630 of FIG. 16
according to one embodiment of the invention. Thus, control
flows from block 1625 to block 1900 in block 1630. FIG. 19
is very similar to FIG. 18. Specifically, blocks 1910, 1915,
1920, and 1930 of FIG. 19 are identical to blocks 1810, 1815,
1820, and 1830; while block 1900 and 1925 differ from
blocks 1800 and 1825. As such, only the difference will be
described here.

US 9,201,766 B2

71

Block 1900 indicates the flow is performed for each regis-
tered subscription, whereas block 1800 indicates the flow is
performed for each instantiated producer. Thus, where the
flow of FIG. 18 is centered on a single subscription and
scanning all producers, the flow of FIG. 19 is centered on a
single producer and scanning all subscriptions.

Block 1925 is the same as block 1825, with the exception
that the absorbing subscription is marked as incomplete. With
reference to the embodiment of the invention shown in FIG.
14 A, the completed column 1420 at the appropriate row is
updated to indicate incomplete.

FIG. 20 is a flow diagram for blocks 1635 and 1670 of FIG.
16 according to one embodiment of the invention. Thus,
control flows from block 1605 and block 1630 to block 2005
in blocks 1635 and 1670. In block 2005, itis determined ifthis
iteration of the flow diagram of FIG. 16 was invoked due to a
dependency (e.g., from block 1630 (block 1920) or 1650
(blocks 1720, 1750 or 1745/1820) of a prior iteration). If not,
control passes to block 1640 or 1675 depending from where
the flow was entered (from block 1630 or 1605).

In block 2010, it is determined if the flow was called due to
a sticky subscription or non-subscription upwardly declared
situation. If not, control passes to block 2015; otherwise,
control passes to block 2020. Block 2010 is performed by
checking the call type parameter from Table 2 (i.e., whether
the call type is sticky subscription or non-subscription
upwardly declared or not). With reference to the embodi-
ments of the invention shown in FIGS. 18 and 19, if the new
producer command was invoked from blocks 1820 or 1920.

In block 2020, the current parent producer is linked to the
caller child producer. With reference to the embodiments of
the invention shown in FIGS. 11C and 14C, the called parent
producer (e.g., producer 1480) identified by the parameter
from the called producer column of table 2 is linked in the
producer graph(s) structure of FIG. 11C to the caller child
producer (e.g., producer 1475) identified by the parameter
from the caller producer column of table 2, using the link
mode and dependency determination producer reference
identified by the parameter from the link mode and depen-
dency determination producer reference columns oftable 2. If
the parent existed previously, the behavior of block 2020
mimics the behavior of an absorbing subscription depen-
dency in the sense that a single argument can be mapped to
zero or more child producers.

In block 2015, the caller parent producer is linked to the
current called child producer. With reference to the embodi-
ment of the invention shown in FIG. 11C, the caller parent
producer identified by the parameter from the caller producer
column of table 2 is linked in the producer graph(s) structure
of FIG. 11C to the called child producer identified by the
parameter from the called producer column of table 2, using
the dependency determination producer reference identified
by the dependency determination producer reference column
of table 2. From blocks 2015 and 2020, control passes to
block 1640 or 1675 depending for where the flow was entered
(from block 1605 or 1630).

FIG. 21 is a flow diagram for overriding producers accord-
ing to one embodiment of the invention. With reference to
FIG. 10, the flow of FIG. 21 is performed by the override
producer module 1045 (or, as described with reference to
alternative embodiments regarding FIG. 10, the module that
handles overrides and unoverrides).

Responsive to an override producer command (block
2110), control passes to block 2120. In block 2120, a new
producer command is invoked for the producer identified by
the override producer command and control passes to block
2130. Block 2120 is performed in one embodiment of the

20

40

45

55

72

invention in case the producer to be overridden has not yet
been instantiated, as well as to mark the producer as unex-
ecuted (block 1640 or 1680) and log it on the execution start
log(block 1665). An alternative embodiment of the invention
that does not allow the overriding of a producer that is not yet
instantiated would perform an additional check between
blocks 1605 and 1610 to determine if this new producer
command was called responsive to an override producer com-
mand, and to indicate an error if this new producer command
was called responsive to an override producer command.

Inblock 2130, the output in the producer output cache (and
in the instance if a field) is set and the producer is marked as
overridden.

Global Execute Commands

FIG. 22A is a part of a flow diagram for execution of the
current producer graph(s) according to one embodiment of
the invention; while FIG. 22B is another part of a flow dia-
gram for execution of the current producer graph(s) according
to one embodiment of the invention. With reference to FIG.
10, the flow of FIG. 22 is performed by the producer graph
execution module 1070.

Responsive to a global execute command, block 2200
shows that a set of candidate producers is selected to be
executed based on the producers on the execution start log and
control passes to block 2205. In one embodiment of the
invention the overridden producers are marked as unexecuted
and execution thereof returns their overridden result (as
opposed to causing their method to be executed), the current
set of candidate producers is the producers on the execution
start log. While one embodiment of the invention is described
above in which overridden producers are marked as unex-
ecuted and execution thereof returns their overridden result
(as opposed to causing their method to be executed), alterna-
tive embodiments may operate differently (e.g., mark over-
ridden producers as executed and when selecting the current
set of candidate producers, the independent producers of the
execution start log and the parents of overridden producers on
the execution start log are selected).

Inblock 2205, a subset of producers ready for execution is
selected from the set of candidate producers and control
passes to block 2210. An exemplary manner of performing
block 2205 is described later herein.

In block 2210, the producers of the current set of ready
producers are sorted by type—standard producers go the
block 2215 and dependency determination producers go to
block 2225. In one embodiment of the invention, block 2210
is performed by checking the return class of the producer.
With reference to the FIGS. 10 and 11D, the method tracking
structure is accessed to determine if the output class of the
producer is DEP, and thus this producer is a dependency
determination producer.

In block 2215, any standard producers in the current set of
ready producers are executed and control passes to block
2220. In one embodiment of the invention, block 2215 is
performed by calling the method with any input parameters
mapped from the outputs of any child producers resulting
from argument dependencies (for arguments, the argument
ID of the link mode is used to map the output of the appro-
priate child producer to the appropriate input argument of the
method being executed). In some embodiments of the inven-
tion, such execution may result in execution of code in the
method of a child producer that writes an output to a given
mechanism (such as set a global variable, sets a field in an
instance which is not the producer output, impacts an external
data source, etc.) or code in the method of the parent producer
that read that output from the given mechanism). In block
2220, for those parents, if any, that have an absorbing sub-

US 9,201,766 B2

73

scription on any of these executed standard producers, the
subscription is marked as incomplete. From block 2220, con-
trol passes to block 2245. With reference to FIG. 14A, the
appropriate row of the completed column 1420 is set to indi-
cate incomplete.

Inblock 2225, any dependency determination producers in
the current set of ready producers are prepared for execution
and control passes to block 2230. An exemplary manner of
performing block 2225 is described later herein.

Inblock 2230, any dependency determination producers in
the current set of ready producers are executed and control
passes to block 2235. In one embodiment of the invention,
block 2230 is performed in similar fashion to block 2215.

In block 2235, a new producer command is executed for
any discovered producers, and subscription logging and pro-
cessing is performed for any subscriptions. The new producer
command part of block 2235 is performed in similar manner
to block 1750, while the subscription logging and processing
is performed in similar manner to blocks 1740 and 1745.

In block 2240, add to the set of candidate producers newly
added to the execution start log. From block 2240, control
passes to block 2245. Block 2240 is performed in similar
manner to block 2200, except only producers newly added to
the execution start log as a result of blocks 2230 and 2235 are
added to the set of candidate producers.

Inblock 2245, the producers that were executed are marked
as executed, the producer output caching (and instance cach-
ing) are updated as necessary, any parent producers of the
producers that were executed are added to the current set of
candidate producers, and the producers that were executed
are removed from the current set of candidate and ready
producers. From block 2245, control passes to block 2250.

In block 2250, it is determined if the set of candidate
producers is empty. If not, control passes back to block 2205;
otherwise, control passes to block 2255.

In block 2255, it is determined in all subscriptions have
been completed. If so, control passes to block 2265 where the
flow diagram ends; otherwise, control passes to block 2260.
With reference to the embodiment of the invention in FIG.
14 A, the subscription type column 1405 and the complete
column 1420 are scanned for any absorbing subscriptions that
are not completed.

In block 2260, the incomplete absorbing subscriptions are
processed and control passes back to block 2205. An exem-
plary manner of performing block 2260 is described later
herein.

FIG. 23 is a flow diagram for block 2205 of FIG. 22
according to one embodiment of the invention. Thus, control
flows from block 2200 to block 2305 in block 2205. In block
2305, for each producer in the set of candidate producers, the
following blocks 2310-2325 are performed.

In block 2310, it is determined if the producer has any
absorbing subscription dependency that is incomplete. If so,
control passes to block 2325; otherwise, control passes to
block 2315. With reference to the embodiment of FIG. 14A,
the subscriber’s producer key column 1400 and subscription
type column 1405 is scanned for a matching to the current
selected producer and absorbing subscription type; and if a
match is found, the completed column 1420 at the appropriate
row is checked to determine the status of that absorbing
subscription dependency.

In block 2315, it is determined if the producers on which
the currently selected producer depends are executed. If not,
control passes to block 2325; otherwise, control passes to
block 2320. With regard to the embodiment of the invention
shown in FIG. 11C, the incremental execution markings col-

10

15

20

25

30

35

40

45

50

55

60

65

74

umn 1180 for the rows of the child dependencies are checked
to determined the execution status of the currently selected
producer’s children.

In block 2320, the currently selected candidate producer is
added to the current set of ready producers and control passes
to block 2325.

In block 2325, the flow ends for the current produced
selected in block 2305.

FIG. 24 is a flow diagram for block 2225 of FIG. 22
according to one embodiment of the invention. Thus, control
flows from block 2210 to block 2405 in block 2225. In block
2405, for each dependency determination producer, the fol-
lowing blocks 2410-2430 are performed.

In block 2410, the type of any previous dependencies gen-
erated by the currently selected dependency determination
producer is determined. If the type of the dependency is
non-subscription, then control passes to block 2420; if the
type is absorbing subscription, then control passes to block
2415; whereas, if the type is sticky subscription, then control
passes to block 2425. Block 2410 is determined by checking
the current output of the producer stored in the producer
output caching. With reference to the class DEP, the output
would indicate non-subscription, absorbing subscription, and
sticky subscription.

In both blocks 2415 and 2425, the entry is removed from
the subscription log. With reference to the embodiment of the
invention shown in FIGS. 14A-C, the following is performed:
1) for absorbing subscriptions (block 2415), the dependency
determination producer (e.g., producer 1455) is used to deter-
mine its parent producer (e.g., producer 1450) in the producer
graph(s), and then the parent producer is looked up in the
subscription log and its entry removed; and 2) for sticky
subscriptions (block 2425), the dependency determination
producer (e.g., producer 1470) is looked up in the subscrip-
tion log and its entry removed. From block 2415, control
passes to block 2420; from block 2425, control passes to
block 2420.

In block 2420, the links already created by the currently
selected dependency determination producer are cleared
from the producer graph(s) and control passes to block 2430.
With reference to the embodiment of the invention shown in
FIG. 11C, the following is performed. It is first determined if
the dependency determination producer has “sticked” on an
existing producer. This is done by scanning the dependency
determination producer’s child producer links column in
FIG. 11C, and checking if one of the links has the sticky
indicator indicating sticky.

If the dependency determination producer has not sticked
on an existing producer, then: 1) for a dependency determi-
nation producer that has produced non-subscription down-
wardly declared dependencies (argument, field, or sequenc-
ing dependencies), the parent of the dependency
determination producer is accessed in the producer graph
through the parent producer reference(s) column 1150 at the
row of the currently selected dependency determination pro-
ducer, and in this parent producer entry, the child producer(s)
link(s) column 1160 is accessed to match the dependency
determination producer reference, and all references of child
producers having that dependency determination producer
reference are cleared; 2) for a dependency determination
producer that has produced non-subscription upwardly
declared dependencies, the parent of the dependency deter-
mination producer is accessed in the producer graph through
the parent producer link(s) column 1150 at the row of the
currently selected dependency determination producer, and
in this parent producer entry, the parent producer link(s) col-
umn 1150 is accessed to match the dependency determination

US 9,201,766 B2

75

producer reference, and all references of parent producers
having that dependency determination producer reference are
cleared; 3) for a dependency determination producer that has
produced an absorbing subscription, the same behavior as
non-subscription downwardly declared dependencies is per-
formed; and 4) for a dependency determination producer that
has produced a sticky subscription, the dependency determi-
nation producer reference extracted from column 1421 of the
subscription log 14 A prior to the removal of the subscription
is looked up in the producer graph(s) structure in the parent
producer link(s) column 1150, and all references of parent
producers having that dependency determination producer
reference are cleared.

If the dependency determination producer has sticked on
an existing producer, as a result of a non-subscription
upwardly declared dependency or a sticky subscription, then
the child producer that the dependency determination pro-
ducer has sticked on is accessed (the child producer in column
1160 with a sticky indicator indicating sticky), and in this
child producer entry, the parent producer link(s) column 1150
is accessed to match the dependency determination producer
reference, and all references of parent producers having that
dependency determination producer reference are cleared.

In block 2430, the flow ends for the dependency determi-
nation producer selected in block 2405.

FIG. 25 is a flow diagram for block 2260 of FIG. 22
according to one embodiment of the invention. Thus, control
flows from block 2255 to block 2505 in block 2260. In block
2505, for each producer with an absorbing subscription
dependency that is incomplete, the following blocks 2510-
2525 are performed.

In block 2510, it is determined if all matching producers
have been executed. If so, control passes to block 2515;
otherwise, control passes to block 2525. With reference to the
embodiments of FIGS. 11C and 14 A, the matching producers
column 1415 at the appropriate row is accessed to determine
the matching producers, and the incremental execution col-
umn 1180 at the appropriate rows is checked for each of the
matching producers.

In block 2515, the absorbing subscription is marked as
complete and control passes to block 2520. With reference to
the embodiments of FIG. 14A, the complete column 1420 at
the appropriate row is set to indicate complete.

Inblock 2520, the producer selected in block 2505 is added
to the current set of candidate producers and control passes to
block 2525.

In block 2525, the flow ends for the producer selected in
block 2505.

Scenarios

In some embodiments, scenarios provide for a way to
specify the filling of a collection with results of invoking
multiple times the same methods of the same instances with
different parameters; and thus avoid the need for writing in
manual invocation sequencing code multiple invocations of
the same methods of the same instances with different param-
eters. In some embodiments of the invention that supports
dynamic dependency, two different scenarios of an applica-
tion may have structurally distinct producer graphs or sub-
graphs in a producer graph of the application if different
instances, different methods, and/or different classes are used
in the scenarios. For instance, an exemplary application pro-
gram is provided to compute an output based on a mathemati-
cal model that takes as an input a named vector of numerical
values. To evaluate the impacts of using different named
vectors, scenarios using different vector instances may be
created, where each instance corresponds to a distinct vector.
Alternatively, the exemplary application program may use the

25

40

45

50

76

same vector instance, but different mathematical models to
compute the output of interest. To evaluate the impact of
adopting a first mathematical model versus adopting a second
mathematical model, a first scenario and a second scenario
may be created. In the first scenario, a first method represent-
ing the first model is invoked. In the second scenario, a second
method representing the second model is invoked. Further-
more, the class in the first scenario may or may not be the
same as the class in the second scenario. If the first and the
second methods are defined to be within the same class, then
the class remains the same in the first and the second sce-
narios. However, if the first method is defined to be within a
first class and the second method is defined to be within a
second class different from the first class, then the first and the
second scenarios have different classes. Note that the first
method in the first class and the second method in the second
class may or may not have identical names.

FIG. 26 illustrates an alternative embodiment of the inven-
tion that supports scenario. Similar to one embodiment shown
above in FIG. 1A, the object-oriented source code 100
includes a class 102, which in turn includes a method 104 and
a producer dependency declaration 106 for the method 104.
Of course, the class 102 would typically include one or more
fields (not shown) and additional methods (not shown). In
addition, the object-oriented source code 100 would typically
include additional classes.

As described above with respect to FIG. 1A, an instance
108 of the class 102 is instantiated during run time. The
instance 108 includes the data of the fields of the class 102. In
addition, a producer 110 is instantiated, where the producer
110 identifies the class 102, the instance 108 of the class 102
(which has associated with it the method 104 of the class
102), and the method 104 of the class 102. The producer
dependency declaration 106 identifies to the runtime a set of
zero or more producers 112 (referred to as child producers of
the producer 110) that must be executed before execution of
the producer 110. In other words, the producer 110 depends
on the set of zero or more producers 112. In addition to or
instead of consuming outputs of the set of producers 112, the
producer 110 may consume data of the instance 108. In addi-
tion, the producer 110 provides at least one output, which
output may be internal to the instance 108 (and thus, modify
the data of the instance 108) and/or may be external; either
way, the output of the producer 110 may be consumed by a set
or zero or more other producers 114 (referred to as parent
producers of the producer 110)). In some embodiments, a
producer graph comprising producer 110, the parent produc-
ers 114, and the child producers 112 is associated with a first
scenario having a unique first scenario key.

To create a producer graph or a sub-graph for a second
scenario distinct from the first scenario, one or more of pro-
ducers 110, 112, and 114 may be stressed. To stress a pro-
ducer, the producer is duplicated. In one embodiment, a pro-
ducer may be duplicated by instantiating the producer from
the class declaration 102, the given method 104, and the
producer dependency declaration 106. Alternatively, a pro-
ducer may be duplicated by cloning or copying a correspond-
ing existing producer for a reference scenario (such as the first
scenario described above). Details of some embodiments of
both techniques are discussed below. In general, all directly
impacted producers are stressed. In addition, producers
dependent on the directly impacted producers, i.e., the indi-
rectly impacted producers, may also be stressed. In one
embodiment, an indirectly impacted producer is stressed if
the indirectly impacted producer falls onto the path between
a producer of interest and the directly impacted producers.
Referring back to FIG. 26, suppose producer 110 is a directly

US 9,201,766 B2

77

impacted producer for the second scenario, then producer 110
is stressed to generate a stressed producer 2610 for the second
scenario. All parent producers 114 of producer 110 are indi-
rectly impacted because all parent producers 114 depend on
producer 110. If a parent producer within the set of parent
producers 114 falls into the path between a producer of inter-
est and producer 110, then the parent producer is stressed. A
collection of the stressed parent producer(s) of producer 110
is represented by the set 2614 for the second scenario. Fur-
thermore, if there is dynamic dependency between some of
the producers within the set 2614, then the producers in the set
2614 may be recursively stressed for the second scenario. As
to the child producers 112 of producer 110, the child produc-
ers 112 may not be stressed for the second scenario since the
child producers 112 are not dependent on producer 110. How-
ever, if a child producer within the set 112 is directly or
indirectly impacted in the second scenario, then the impacted
child producer within the set 112 may be stressed to generate
the stressed child producer 2612 for the second scenario. The
dependencies between the producers 2610, 2612, and 2614
may remain unchanged in the second scenario. Alternatively,
some or all of the dependencies between the producers 2610,
2612, and 2614 may change in the second scenario. In FIG.
26, the producer graph of the second scenario is illustrated
with dotted lines.

In one embodiment of the invention, all producers in a first
producer graph of an application program are stressed for a
new scenario. As a result, a producer graph of the stressed
producer is created and added to a collection of producer
graphs representing the application program. However, opti-
mization may be allowed in some embodiments such that
only a subset of the producers is stressed to create a sub-graph
within the first producer graph for the new scenario. More
details of some embodiments of the creation of producer
graphs or sub-graphs for scenarios are discussed below.

FIG. 27A is a block diagram illustrating a runtime with
producer graph oriented programming support as well as
scenario support according to one embodiment of the inven-
tion. Details of reference numerals 320, 325, 330, 335, 340,
380, 384, and 345 have been described above with reference
to FIG. 3A. To support scenario, the runtime 335 also receives
scenario instantiation information 328. Scenario instantiation
information 328 may be provided to the runtime 335 via
various manners, such as, for example, via client code (such
as, graphical user interface (GUI), command line interface
(CLI), etc.) Alternatively, scenario instantiation information
328 may be specified in producer dependency declaration
(such as producer dependency declaration statements or pro-
ducer dependency declaration code). Alternatively, some or
all of scenario instantiation information 328 may be specified
in source code of a method of a stressed producer generation
producer. More details of stressed producer generation pro-
ducer are discussed below.

According to one embodiment of the invention, scenario
instantiation information 328 is provided to a new scenario
module 337 of runtime 335. Based on scenario instantiation
information 328, the new scenario module 337 instantiates
new scenarios. In some embodiments, the runtime 335
includes a scenario tracking structure 338 to store scenario
keys, references to scenario objects, which may specify a set
of one or more directly impacted producers and the corre-
sponding predetermined outputs or output transformations of
the directly impacted producers, and an impact path tracking
structure, which will subsequently hold the list of producers
impacted by the scenario. Based on a current set of one or
more stressed producers whose outputs are of interest 325, the
automated producer graph generation module 340 may gen-

10

15

20

25

30

35

40

45

50

55

60

65

78

erate a producer graph or a sub-graph for the one or more
stressed producers of interest by acting on the scenario track-
ing structure 338. To evaluate the impact on the stressed
producer of interest by one or more predetermined outputs of
one or more directly impacted producers in the scenario, the
producer graph execution module 345 may walk through the
producer graph or sub-graph generated to execute producers
impacted, directly or indirectly, by the predetermined outputs
or output transformations for the scenario.

In some embodiments, scenario information 328 includes a
reference scenario key, a target scenario key, a list of one or
more directly impacted producers and the corresponding pre-
determined outputs of the directly impacted producers. In
general, a scenario key is a unique key to identify a scenario.
In some embodiments, a reference scenario is an existing
scenario, which may include the current states and outputs of
the application program. A target scenario is a collection of
impacts attributed to the list of directly impacted producers
and their corresponding outputs. For the target scenario, out-
puts of the producers identified by the list of directly impacted
producers are going to be overridden with the outputs speci-
fied in the list. The runtime 335 may use the reference sce-
nario to find producers indirectly impacted by the directly
impacted producers. The impact on a stressed producer of
interest by the directly impacted producers may be evaluated
using the target scenario without overwriting or modifying
the reference scenario. In other words, the existing outputs
and/or instances of the producers are preserved or maintained
for the first scenario. In some embodiments, a portion of the
producer graph of the reference scenario may be linked to the
producer graph of the target scenario if the producer of inter-
est depends on the portion and the portion is not impacted,
directly or indirectly, by the directly impacted producers in
the target scenario. In other words, a sub-graph for the target
scenario may be created within the producer graph of the
reference scenario.

FIG. 27B is a block diagram illustrating a runtime with
producer graph oriented programming support that also sup-
ports incremental execution and overridden producer outputs,
as well as scenario, according to one embodiment of the
invention. Details of components 320, 325, 350, 352, 354,
360, 365, 380, 382, 384, 370, 396, 390, 392, and 394 have
been discussed above with reference to FIG. 3B. In order to
support scenario, scenario instantiation information 328 is
input to the automated producer graph generation module
365. Details of some embodiments of the scenario instantia-
tion information 328 have been described above with refer-
ence to FIG. 27A. Based on the scenario instantiation infor-
mation 328, the automated producer graph generation
module 365 may construct a producer graph or a sub-graph
for each scenario. More details of some embodiments of the
construction of producer graph or sub-graph for a scenario are
described below. To evaluate the impact on a stressed pro-
ducer of interest (i.e., a producer of interest for a particular
scenario), the producer graph execution module 370 may
walk through the producer graph or the sub-graph created for
that scenario to execute the producers accordingly. More
details of some embodiments of the execution of a producer
graph or a sub-graph for a scenario are described below.

In some embodiments, scenario instantiation information
328 is provided to override producer output module 390,
which overrides the output of one or more directly impacted
producers in the corresponding scenario. Details of the opera-
tion of the override producer output module 390 have been
described above with respect to FIG. 3B.

FIGS. 28A-D illustrate some exemplary producer graphs
of'an application program for different scenarios. Referring to

US 9,201,766 B2

79

FIG. 28A, aproducer graph for scenario 1 is shown on top and
aproducer graph for scenario 2 is shown on bottom. Scenarios
1 and 2 have scenario keys “S1” and “S2,” respectively. In
some embodiments, scenario 1 is also referred to as the
default scenario or the reference scenario. The sample appli-
cation program has at least seven producers, namely Producer
1-Producer 7, where Producer 1 directly depends on Producer
3 and Producer 4, Producer 2 directly depends on Producer 4,
Producer 3 directly depends on Producer 5 and Producer 6,
and Producer 4 directly depends on Producer 7. In scenario 1,
the output of Producer 7 has a value of X, and the output of
Producer 1 has a value of 7.

In some embodiments, a stressed producer is identified by
a pair of a producer key and a scenario key. For example, the
stressed Producer 1 in scenario 2 is identified by the pair
{Producer 1, S2}. A stressed producer may be specified by
users via various ways, such as via client code (e.g., a GUL, a
CLI, etc.). Alternatively, the application program may include
a stressed producer generation producer to generate one or
more stressed producers. An exemplary embodiment of a
stressed producer generation producer, namely, Producer 8, is
shown in FIG. 28B. Referring to FIG. 28B, exemplary pseudo
code of Producer 8 is shown on the right side of the figure.
Initially, a class of stressed producers is defined as having a
field representing the producer key of interest and a field
representing the scenario. In the current example, Producer 8
is independent, that is, the producer dependency declaration
statement of Producer 8 is null. Then a method of Producer 8
may provide scenario information of scenario 2, assign values
to the fields of a stressed producer, and output a collection of
stressed producers.

Referring back to FIG. 28A, scenario 2 is defined by the
following scenario information: reference scenario key=null,
target scenario key=S2, and a list of directly impacted pro-
ducers and their corresponding outputs. In the current
example, the list of directly impacted producers has only one
producer, namely Producer 7, which has a designated output
X,. However, it should be appreciated that there may be
multiple directly impacted producers in a scenario. In some
embodiments, the entire producer graph is reproduced for
scenario 2 by creating each of Producer 1-Producer 7 as
illustrated in FIG. 28A. In the producer graph for scenario 2,
the output of the directly impacted producer, i.e., Producer 7,
is overridden with the output specified in the definition of
scenario 2, i.e., X,. The producer of interest in the current
example is Producer 1. By executing the producer graph for
scenario 2, the output of the stressed producer of interest, i.e.,
Producer 1 in scenario 2, is determined to be Z,. Alternative
approaches to generate sub-graphs for scenarios within an
existing producer graph are available and some embodiments
of which are described in details below.

Since a second producer graph is created for scenario 2,
modifications made for scenario 2 (e.g., overriding the output
of Producer 7) does not aftect the producer graph for scenario
1. Thus, the outputs of the producers for scenario 1 are not
overwritten by executing the application program with the
modifications made for scenario 2. As such, the technique of
creating scenarios is useful in evaluating potential or possible
impacts and/or effects of modifications without losing the
existing outputs of the producers in the application program.
It may be useful to retain or preserve the existing outputs of
the producers for various reasons, such as, for example, to
automatically determine derivative of producers using finite
differences. Referring back to the embodiment in FIG. 28A
and assuming thatZ,, Z,, X, and X, are numerical values, the
derivative of the producer of interest, i.e., Producer 1, from

10

15

20

25

30

35

40

45

50

55

60

65

80

scenario 1 to scenario 2 may be readily computed using
outputs from both scenario 1 and scenario 2 as follows:

Derivative of Producer 1=(Z,-Z)/(X,-X)

Furthermore, higher order of derivatives, i.e., Nth order
derivatives (where N is an integer greater than one), may also
be readily computed using the outputs from different sce-
narios. In some embodiments, cross derivatives of an output
of a producer of interest may be computed when more than
one inputs change from one scenario to another. For example,
suppose inputs X, and Y, are changed to X, and Y, respec-
tively, from one scenario to another. As a result, an output of
a producer of interest is changed from Z, to Z,. Then a cross
derivative of the output of the producer of interest may be
computed as follows:

Cross Derivative of Producer of Interest=(Z,—Z,)%/
(=X)*(1-T1)

Since the runtime may keep track of producer outputs for
different scenarios and may automatically determine deriva-
tives of producers, programmers do not have to write manual
invocation sequencing code to run the application program
multiple times, to keep track of the corresponding outputs,
and to code methods for computing derivatives using the
corresponding outputs.

As mentioned above, alternative approaches to generate a
sub-graph for scenario 2 are available. Examples of some
alternative approaches are illustrated in FIGS. 28C and 28D.

Referring to FIG. 28C, a technique of linking a portion of
the producer graph for scenario 1 (i.e., the reference scenario)
is used to generate the producer graph for scenario 2 (i.e., the
target scenario). Initially, a runtime may receive a new
stressed producer command from a user via client code to
indicate that a producer of interest is Producer 1. Alterna-
tively, a stressed producer generation producer, such as Pro-
ducer 8, may trigger the invocation of the new stressed pro-
ducer command. In response to the new stressed producer
command, the runtime constructs a producer graph for Pro-
ducer 1 for scenario 1, which is also referred to as a default
scenario or a reference scenario. Then a second new stressed
producer command is received from user via client code or
triggered by a stress producer generation producer (e.g., Pro-
ducer 8) to indicate that a producer of interest is Producer 2.
In response to the second new stressed producer command,
the runtime adds Producer 2 into the producer graph for
scenario 1.

Then the runtime receives scenario information defining
scenario 2. Again, the scenario information may be from
client code. The scenario information specifies a reference
scenario key to be “S1,” a target scenario key to be “S2,” and
a list of directly impacted producers and their corresponding
outputs for the target scenario. The list of directly impacted
producers includes only one producer in the current example,
namely Producer 7, and the output of Producer 7, namely X,.

To evaluate the impact or effect of scenario 2, i.e., changing
the output of Producer 7 to X, on a producer, such as Pro-
ducer1, in the application program, Producer 1 is identified as
a producer of interest. Further, Producer 1 is identified with
the scenario that is of interest. Thus, a stressed producer,
which s a pair of a producer key of interest and a scenario key,
is identified, namely, {Producer 1, S2}. In some embodi-
ments, the producer of interest is identified by users via client
code, such as GUI, CLI etc. Alternatively, the producer of
interest may be identified in the output of a stressed producer
generation producer (e.g., Producer 8).

Based on the dependencies between the producers and
scenario information, the runtime may identify both directly

US 9,201,766 B2

81

and indirectly impacted producers for scenario 2. The iden-
tification of the directly and indirectly impacted producers
may also be referred to as tracking. The directly and indirectly
impacted producers may be tracked using an impacted path
tracking structure (IPTS). In the current example, the
impacted path tracking structure contains Producer 7, Pro-
ducer 4, Producer 1, and Producer 2. Note that Producers 1, 2,
and 4 are indirectly impacted producers while Producer 7 is a
directly impacted producer for scenario 2. In some embodi-
ments, using the impact list of scenario 2, the runtime may
identify the directly impacted producer(s). Then the runtime
may use the producer graph for scenario 1 to track the indi-
rectly impacted producers by traversing the producer graph
for scenario 1 from the directly impacted producers as indi-
cated by [B], [C], [D], and [E] in FIG. 28C. If the producer
graph for scenario 1 has not been constructed yet, the runtime
may build the producer graph for scenario 1 before tracking
the indirectly impacted producers. Alternatively, if no refer-
ence scenario is provided or the producer graph for the refer-
ence scenario has not been constructed yet, the runtime may
create the producer of interests, the directly impacted produc-
ers, and any intermediate producers falling on the path
between the producers of interest and the directly impacted
producers for scenario 2 using the corresponding methods
and producer dependency declarations of the aforementioned
producers.

In some embodiments, the runtime goes through the
impacted path tracking structure to invoke a new stressed
producer command for each impacted producer in the
impacted path tracking structure. The stressed producers gen-
erated are interconnected to form a sub-graph of the existing
producer graph for scenario 1. The sequence of invocation
may not matter because the new stressed producers (i.e.,
Producers 1, 2, 4, and 7 for scenario 2) are interconnected to
each other as they are created as indicated by [G] in FIG. 28C.
In some embodiments, where a producer of interest does not
exist in the reference scenario, such a producer of interest
would not be tracked in the impacted path tracking structure.
Nevertheless, the runtime invokes a new stressed producer
command for such a producer of interest to create the pro-
ducer graph for scenario 2.

To optimize the producer graph for scenario 2, the produc-
ers that are not impacted, directly or indirectly, by Producer 7
but are depended on by the producer of interest, i.e., Producer
1, may not be duplicated or stressed in scenario 2. Rather,
these producers are linked to the producer graph of scenario 2
from scenario 1. In the current example, these producers
include Producers 3, 5, and 6, where Producer 1 directly
depends on Producer 3 and Producer 3 directly depends on
Producers 5 and 6. As illustrated in FIG. 28C, a link is created
to link Producer 3 of scenario 1 to Producer 1 of scenario 2 at
[F]. As such, the subset of the producer graph of scenario 1
having Producer 3 and child producers of Producer 3 (i.e.,
Producer 5 and Producer 6) are linked to the producer graph
of'scenario 2. In other words, a sub-graph within the producer
graph for scenario 1 has been created for scenario 2. Note that
the impacts on Producer 7 for scenario 2 do not affect Pro-
ducer 3 because Producer 3 does not depend, directly or
indirectly, from Producer 7.

To further optimize the process of creating the producer
graph of scenario 2, the runtime may not duplicate nor stress
producers that are not directly or indirectly depended upon by
the producer of interest, regardless of whether such producers
are impacted or not in scenario 2. One example of such an
optimization is illustrated in FIG. 28D. Similar to FIG. 28C,
a producer graph for scenario 1 is created and Producer 1 is
identified as a producer of interest in scenario 2, where sce-

10

15

20

25

30

35

40

45

50

55

60

65

82

nario 2 is defined as described above. In some embodiments,
anew stressed producer command is invoked on the producer
of interest, i.e., Producer 1, as indicated by [A] in FIG. 28D.
The new stressed producer command may be invoked by user
via client code or be triggered by a stressed producer genera-
tion producer, such as Producer 8 in FIG. 28B.

Depending on the initial dependency declaration order, the
runtime may invoke new stressed producer command on pro-
ducers that Producer 1 depends on in that order. For example,
if Producer 3 comes before Producer 4 in the initial depen-
dency declaration, new stressed producer command is
invoked on Producer 3 first, and then on Producer 4, and vice
versa. When a new stressed producer command is invoked on
Producer 3, a link is created at [F] to link Producer 1 in
scenario 2 to Producer 3 in scenario 1 since Producer 3 is not
impacted in scenario 2. When a new stressed producer com-
mand is invoked on Producer 4, a stressed Producer 4 is
cloned in scenario 2 as indicated by [G] in FIG. 28D. To clone
stressed Producer 4 in scenario 2, the runtime may use infor-
mation from Producer 4 in the producer graph of scenario 1 to
make a copy of Producer 4 in the sub-graph for scenario 2.
Alternatively, the runtime may create a new Producer 4 by
instantiating Producer 4 based on producer dependency dec-
laration and the method of Producer 4. After stressed Pro-
ducer 4 is added to the producer graph, new stressed producer
command is invoked on Producer 7 to stress Producer 7 for
scenario 2 as indicated by [H] in FIG. 28D. Like Producer 4,
Producer 7 may be stressed by instantiation or cloning. Note
that the sub-graph for scenario 2 is now completely con-
structed as shown in FIG. 28D without stressing Producer 2 in
scenario 2 because the producer of interest in scenario 2,
namely Producer 1, does not depend, directly or indirectly, on
Producer 2, even though Producer 2 is indirectly impacted by
Producer 7. As a result, the process of creating the sub-graph
for scenario 2 is further optimized.

FIG. 29 is a flow diagram of a logical execution flow of a
runtime client and its relationship to a runtime with producer
graph oriented programming support according to one
embodiment of the invention. In FIG. 29, dashed dividing line
600 separates the logical execution flow of a runtime client
610 from the runtime with producer graph oriented program-
ming support 640. Details of blocks 615, 620, 625, 630, 645,
650, 655, and 660 have been described above with reference
to FIG. 6. To support scenarios, the runtime client 610 first
checks whether there is any new scenario in block 616. If
there is anew scenario, the runtime client 610 determines new
scenario information in block 617. Furthermore, a scenario
instantiation command may be invoked or logged in the com-
mand log 665 to instantiate the new scenario. In response to
the new scenario command, the runtime 640 instantiates a
new scenario at block 648. Then the runtime client 610 tran-
sitions into block 615 to continue the execution flow. Other-
wise, the runtime client 610 skips block 617 and transitions to
block 615 to continue the execution flow. At block 615, the
runtime client 610 determines a set of one or more stressed
producers whose output is of interest. Then the runtime client
610 transitions to block 620 to continue the execution flow as
described above with reference to FIG. 6.

To evaluate the impacts on one or more producers of inter-
est for the scenario, a producer graph execution module is
invoked at block 630. Then the producer graph execution
module may walk through the producer graph or a sub-graph
of the scenario to execute any producers that have to be
executed based on tracking in block 660. In block 630, the
producer graph execution module is invoked and control
optionally returns to block 615, block 625, and/or block 616.

US 9,201,766 B2

83

FIG. 30 is a block diagram of an alternative implementa-
tion according to one embodiment of the invention that sup-
ports scenario. In FIG. 30, dashed dividing line 1000 sepa-
rates a runtime client 1002 from a runtime with producer
graph oriented programming support 1004. Details of various
components of the runtime client 1002 and the runtime 1004
have been described above with reference to FIG. 10. Thus,
the following description is focused on scenario related com-
ponents. In some embodiments, the runtime 1004 further
includes a new scenario module 1096 and a scenario tracking
structure 1050 to support scenario.

As discussed above with reference to FIG. 10, a new class
module 1095 may instantiate a class based on class defini-
tions 1010. Information of an instantiated class may be stored
in the class tracking structure 1092. One exemplary embodi-
ment of a class tracking structure 1092 is shown in FIG. 31A.
Referring to FIG. 31A, a class key 1110 and a class reference
1115 (such as a class pointer) are stored in the class tracking
structure for each class instantiated. Referring back to FIG.
30, the class definitions 1010 on the side of the runtime client
1002 includes stressed producer generation producer code
1018 according to one embodiment of the invention. As dis-
cussed above with reference to FIG. 28B, a stressed producer
generation producer is a producer that outputs a collection of
stressed producers, each of which includes a producer key
and a scenario key. Some exemplary pseudo code of stressed
producer generation producer code 1018 is also shown in
FIG. 28B. To support scenario, the runtime client 1002 further
provides scenario instantiation commands 1019 with sce-
nario keys. The scenario keys may be used in the instantiation
of new instances to associate the instances with the corre-
sponding scenario(s). Information on the instantiated
instances may be stored in the instance tracking structure
1065. An exemplary embodiment of the instance tracking
structure 1065 is shown in FIG. 31B. For each instance
instantiated, a scenario key 1123, an instance reference 1120,
and a stressed instance reference 1125 are stored in the exem-
plary instance tracking structure in FIG. 31B.

Referring back to FIG. 30, the runtime client 1002 may
invoke a scenario instantiation command 1019 with a unique
scenario key to create a new scenario. In response to the
scenario instantiation command 1019, the new scenario mod-
ule 1096 may save new scenario information (such as sce-
nario information 328 in FIG. 27A) in the scenario tracking
structure 1050. An exemplary embodiment of the scenario
tracking structure 1050 is illustrated in FIG. 31D. In some
embodiments, the scenario tracking structure 1050 includes a
table having a column for scenario key, a column for scenario
reference, and a column for impact path tracking structure as
illustrated in FIG. 31D. A scenario key 3110 may be a unique
key assigned to a scenario to identify the scenario. A scenario
reference 3112 may refer to a scenario object. An impact path
tracking structure 3113 keeps track of producers impacted in
a corresponding scenario.

FIG. 31E illustrates one embodiment of a scenario object
tracking structure. The scenario object tracking structure may
include a table having a row for each scenario. For each
scenario, a reference scenario key 3120, a target scenario key
3122, and a reference to an impact list 3124 are stored in the
scenario object tracking structure. The target scenario key
3122 identifies the scenario to be built. Thus, the target sce-
nario key 3122 is the same as the corresponding scenario key
3110 in the scenario tracking structure in FIG. 31D. The
reference scenario key 3120 identifies a scenario based on
which the target scenario may be built. Ifthere is no reference
scenario, then the reference scenario key 3120 is null. The

20

25

40

45

55

84

reference to an impact list of the scenario 3124 refers to an
impact list of the scenario, such as the exemplary impact list
shown in FIG. 31F.

In FIG. 31F, the exemplary impact list of a scenario
includes a column for each of the following: a directly
impacted producer key 3130, a relative or absolute indicator
3134, an output instance 3132, a transformation parameter
3136, and a transformation method name and method class
3138. Each directly impacted producer in a corresponding
scenario occupies a row of the impact list. The directly
impacted producer key 3130 identifies a directly impacted
producer in the scenario.

In some embodiments, the output value may be assigned an
absolute value or a relative value. The relative or absolute
indicator 3134 indicates whether the output value is assigned
an absolute value or a relative value. If the indicator 3134
indicates that it is absolute, the output value of the directly
impacted producer is designated to be the output instance
3132 regardless of the inputs to the directly impacted pro-
ducer. Otherwise, the transformation parameter 3136 is
applied to the current output of the directly impacted pro-
ducer (i.e., the output of the directly impacted producer for
the reference scenario) to transform the current output of the
directly impacted producer using the transformation method
with the transformation method name and method class 3138.
Then the output of the directly impacted producer for the
target scenario is overridden with the transformed current
output. Note that the output of the directly impacted producer
may be a value (such as a numerical value) or an instance. For
example, the current output of a directly impacted producer is
a numerical value, the transformation parameter 3136 is a
factor value, and the transformation method is multiplication,
then the output of the directly impacted producer for the target
scenario is a value equal to a product of the factor value and
the current output value of the directly impacted producer. In
another example, the transformation parameter 3136 is a
spread value and the transformation method is summation,
then the output of the directly impacted producer for the target
scenario may be equal to a sum of the spread value and the
current output value of the directly impacted producer. One
should appreciate that the output value of the directly
impacted producer may be generated using other formulae in
different embodiments as a function of the current output
value.

Referring back to FIG. 30, the automated stressed producer
graph generation module 3040 accesses the scenario tracking
structure 1050. In response to the stressed producer instan-
tiation commands with producer keys and scenario keys
1025, the automated stressed producer graph generation
module 3040 may instantiate a stressed producer based on
scenario information of a corresponding scenario from the
scenario tracking structure 1050, the class tracking structure
1092, the method tracking structure 1058, the instance track-
ing structure 1065, and the instances 1052. Alternatively,
stressed producer generation producer code 1018 within class
definitions 1010 is processed by runtime 1004 to generate a
class of stressed producer generation producers 3054 and a
method to generate stressed producers 3056. The class and
the method generated are input to the automated stressed
producer graph generation module 3040, which instantiates a
stressed producer accordingly. The automated stressed pro-
ducer graph generation module 3040 interconnects the
stressed producers instantiated to generate a producer graph
or a sub-graph for the corresponding scenario. Details of
some embodiments of the new stressed producer instantiation
flow that supports scenario are discussed below with refer-
ence to FIGS. 34A-34G.

US 9,201,766 B2

85

According to one embodiment of the invention, the pro-
ducer graph is stored in the producer graph structure 1060. An
exemplary producer graph structure is shown in FIG. 31C.
The producer graph structure is substantially the same as the
one shown in FIG. 11C. Since each scenario is tracked indi-
vidually in a corresponding producer graph or sub-graph, the
stressed producer graph execution module 3070 may walk
through the corresponding producer graph or sub-graph for a
scenario to execute at least some of the stressed producers for
the scenario to evaluate impacts on one or more stressed
producers of interest for the scenario without overwriting or
changing outputs of the producers for other scenarios. Details
of some embodiments of the execution flow of producer
graphs supporting scenario are discussed below with refer-
ence to FIGS. 35A and 35B.

Note that the modules and structures to support scenario in
runtime client 1002 and runtime 1004 described above may
be added into some embodiments supporting contingent and
subscription type dynamic producer dependencies, such as
the one illustrated in FIG. 12 above.

FIG. 32 is a flow diagram illustrating a new scenario instan-
tiation flow according to one embodiment of the invention. In
block 3210, a runtime receives a new scenario instantiation
command. The runtime then checks whether the scenario
identified by the new scenario instantiation command already
exists in block 3220. If the scenario already exists, then the
new scenario instantiation flow is done at block 3290. Other-

10

15

20

25

86

instance with its instance key, stressed instance reference, and
scenario key(s) in block 3360 in FIG. 33. As discussed above,
there is a unique scenario key for each scenario. Thus, there
may be multiple scenario keys if the instance is associated
with multiple scenarios. In one embodiment, the instance key
and the scenario key(s) are stored in an instance tracking
structure as illustrated in FIG. 31B. Referring to FIG. 31B, the
instance tracking structure includes one column for each of
scenario key 1123, instance key 1120, and stressed instance
reference 1125.

FIGS. 34 A-34G illustrate flow diagrams of instantiation of
a new stressed producer in a target scenario according to one
embodiment of the invention. FIGS. 34A-34C illustrate the
overall flow of the instantiation of a new stressed producer
while FIGS. 34D-34G illustrate an expanded flow of certain
operations in the overall flow.

Referring to FIG. 34A, a runtime receives a new stressed
producer command at block 1600. The new stressed producer
command specifies a producer key and a target scenario key.
A producer with the producer key and the target scenario key
is the stressed producer to be generated by the new stressed
producer command. In one embodiment of the invention, a
new stressed producer command may execute responsive to a
variety of situations. Table 3 below identifies the various
situations and parameters passed according to one embodi-
ment of the invention.

TABLE 3
Called Producer (to Dependency
Caller be created if does determination
Situations Producer not already exist) Call type Link mode producer reference Scenario
Producer of N/A Producer of Of interest ~ N/A N/A There or Null
interest interest to be
created
Direct (non- Parent Child Direct Caller parent Dependency Scenario of
subscription) producer link mode determination caller parent
producer producer
providing the
dependency
Sticky Child Parent (parent Sticky Called parent Dependency Scenario of
subscription class and method producer (argument determination caller child
key from sticky ID from sticky producer producer
subscription subscription criteria providing the
criteria for for parent producer dependency
parent producer to be created)
to be created;
instance key of
existing child
caller producer)
Override N/A Producer to be Over-ridden N/A N/A There or Null
overridden
Non- Child Parent Non- Called parent Dependency Scenario of
subscription subscription producer link mode determination caller child
upwardly upwardly producer producer
declared declared providing the
dependency
55

wise, the runtime adds scenario information, such as, for
example, a target scenario key, a reference scenario key, and
a reference to an impact list of the scenario to a scenario
tracking structure at block 3230. Then the runtime transitions
into block 3290 and the new scenario instantiation flow is
done.

FIG. 33 is a flow diagram illustrating a new instance instan-
tiation flow that supports scenario according to one embodi-
ment of the invention. Note that FIG. 33 is substantially
similar to FIG. 15 and details of the flow have been described
with reference to FIG. 15 above. To support scenario, the
runtime instantiates an instance of a class and stores the

60

65

In response to the new stressed producer command, the
runtime checks whether the stressed producer (i.e., the pro-
ducer with the producer key and the target scenario key)
already exists at block 1605. If the stressed producer already
exists, then the runtime links the producer into the producer
graph if the producer is called due to dependency at block
1670. Otherwise, if the stressed producer does not exist, then
the runtime identifies both directly and indirectly impacted
producers if the producer is the producer of interest at block
1601. Details of block 1601 are discussed below with refer-
ence to FIG. 34D. Then runtime transitions into block 1602 to
handle scenarios, during which, runtime sets the value of

US 9,201,766 B2

87

producer creation. In some embodiments, producer creation
has three possible values, namely, no creation, create new, and
clone. Details of block 1602 are discussed below with refer-
ence to FIG. 34E. Then the runtime checks the value of
producer creation at block 1603. If producer creation is create
new, the runtime transitions to entry point A in FIG. 34B. If
producer creation is clone, the runtime transitions to entry
point B in FIG. 34B. If producer creation is no creation, the
runtime transitions to block 1670.

After block 1670, the runtime checks if the producer is
overridden, has a sticky subscription, or is upwardly declared
at block 1675. If so, the runtime marks producer as unex-
ecuted at block 1680 and logs the producer in the execution
start log at block 1665. Then the runtime returns execution
status of the producer at block 1660. Otherwise, if the pro-
ducer is not overridden, the runtime transitions into block
1660 to return execution status of the producer.

Referring to FIG. 34B, the runtime goes to entry point A if
producer creation is create new. From entry point A, the
runtime transitions into block 1610 to call new instance mod-
ule. Then the runtime accesses class definition of an instance
of the producer at block 1615. Next, the runtime accesses
method and producer dependency declaration statement of
the producer in the class definition at block 1620. Then the
runtime adds the producer to the producer graph of the target
scenario at block 1625. The runtime transitions into block
1604 afterwards.

Referring back to block 1603 in FIG. 34A, if producer
creation is clone, the runtime transitions to entry point B in
FIG. 34B. From entry point B, the runtime transitions into
block 1626 to call a new instance module to instantiate an
empty instance. Then the runtime copies information from
the producer with the producer key and the reference scenario
key to fill the empty instance at block 1627. Next, the runtime
clones the producer with the filled instance at block 1628. The
runtime then adds the cloned producer with the target sce-
nario key into the producer graph at block 1629. The runtime
transitions into block 1604 afterwards.

Atblock 1604, the runtime processes impact if producer is
in the impact list of the scenario. Details of block 1604 are
discussed below with reference to FIG. 34G. Then the runt-
ime processes subscription filtering criteria at block 1630 for
each registered subscription. If the producer is called due to
dependency, the runtime links the producer into the producer
graph at 1635. Then the runtime transitions to entry point C.

Referring to FIG. 34C, the runtime transitions to block
1640 from entry point C to mark the producer as unexecuted.
In some embodiments, the runtime may receive a producer
unoverride command at block 1690. In response to the pro-
ducer unoverride command, the runtime may mark the pro-
ducer as not overridden at block 1695 and then transitions into
block 1640.

From block 1640, the runtime transitions into block 1645
to check if the producer has any dependencies and is not
overridden. If the producer has no dependencies and is not
overridden, then the runtime transitions to entry point D to
return to block 1665 in FIG. 34A. Otherwise, the runtime
transitions into block 1650. At block 1650, for each depen-
dency in the dependency declaration that is to be determined
now, the runtime determines the number of producers and
invokes a new stressed producer command for each. If all
dependent producers exist and have been executed, the runt-
ime adds the producer to the execution start log at block 1655
and transitions to entry point E to return to block 1660 in FIG.
34A.

FIG. 34D illustrates an expanded flow diagram of block
1601 according to one embodiment of the invention. The

20

40

45

55

65

88

runtime first locates the impact path tracking structure using
the scenario tracking structure and the scenario key in block
3405. Then the runtime determines at block 3410 if the impact
path tracking structure in the scenario tracking structure is
already instantiated. If the impact path tracking structure is
already instantiated, then both directly and indirectly
impacted producers have been identified already. Thus, the
runtime transitions to block 3419 to end the flow. Otherwise,
the runtime transitions to block 3412. At block 3412, the
impact path tracking structure is instantiated and stored in the
scenario tracking structure. Then the runtime transitions to
block 3413. For each directly impacted producer in the sce-
nario definition, the runtime looks for a producer with the
corresponding producer key and the reference scenario key in
the scenario definition. The runtime determines if such a
producer exists at block 3415. If such a producer exists, the
runtime adds the producer to impact path tracking structure
along with all ancestors in block 3417 and then transitions to
block 3418. Otherwise, the runtime skips block 3417 and
transitions to block 3418. At block 3418, the runtime checks
if there is any more directly impacted producer in the scenario
definition. If there is, then the runtime returns to block 3413 to
repeat the operations described above. Otherwise, the runt-
ime transitions to block 3419 to end the flow.

FIG. 34E illustrates an expanded flow diagram of block
1602 according to one embodiment of the invention. The
runtime checks if the impact path tracking structure is empty
at block 3420. If the impact path tracking structure is empty,
the runtime transitions to block 3429. Otherwise, the runtime
checks if the producer with reference scenario key is in the
impact path tracking structure at block 3422. If it is, then the
runtime sets producer creation to be “clone” at block 3424.
Otherwise, the runtime checks if the producer exists in the
producer graph with the reference scenario at block 3426. Ifit
exists, then the runtime sets producer creation to be “no
creation” at block 3428. This is an optimization that results in
duplicating only a portion of the producer graph for the target
scenario. The producers that are not created or cloned may be
linked to the sub-graph for the target scenario from the refer-
ence scenario. Otherwise, the runtime transitions to block
3429. At block 3429, the runtime sets producer creation to be
“create new.”

FIG. 34F illustrates an expanded view of block 1605 in
FIG. 34A according to one embodiment of the invention. At
block 1605, the runtime checks whether the stressed producer
already exists. In some embodiments, the runtime checks if
the combination of the class key, the instance key, the method
key, and the scenario key already exists in the producer table.
If the combination exists, the stressed producer exists. Oth-
erwise, the stressed producer does not exist.

FIG. 34G illustrates an expanded flow diagram of block
1604 according to one embodiment of the invention. In some
embodiments, there are corresponding dedicated interfaces to
get and to set producer outputs. At block 3430, the runtime
checks if the impact on producer is relative. If not, then the
impact on the producer is absolute. Thus, the runtime assigns
the output instance from the impact list of the scenario as the
new output of the producer in the target scenario at block
3436. Then runtime transitions to block 3440. Otherwise, the
impact on the producer is relative and the runtime gets the
current output of the producer at block 3432. Then the runt-
ime generates the new output of the producer using the cur-
rent output and the corresponding transformation method and
the corresponding transformation parameter in the impact list
of'the scenario at block 3434. Next, the runtime transitions to
block 3440.

US 9,201,766 B2

89

In some embodiments, the runtime may generate the new
output by adding the spread value to the current output. Alter-
natively, the runtime may generate the new output by multi-
plying the current output with the factor value.

At block 3440, the runtime sets the output of the producer
at the new output value generated in the producer output
cache and in an instance if the output is a field. The runtime
then marks the producer as overridden at block 3442 and
transitions to block 1630 in FIG. 34B.

FIGS. 35A-35B are flow diagrams illustrating a stressed
producer graph execution flow according to one embodiment
of the invention. At block 2200, the runtime selects a set of
candidate producers to be executed based on the producers on
the execution start log as the current set of candidate produc-
ers. Then the runtime selects a subset of producers from the
current set of candidate producers that are ready to be
executed as a current set of ready producers at block 2205. For
each producer in the current set of ready producers, the runt-
ime checks the type of the producer at block 2210. In one
embodiment, there are three types of producers, namely, stan-
dard producers, stressed producer generation producers, and
dependency declaration producers.

If the producer is a standard producer, the runtime transi-
tions to block 2215 to execute the producer. Then the runtime
marks any parents that have an absorbing subscription depen-
dency on the executed producer as incomplete at block 2220
and transitions to entry point A.

If the producer is a stressed producer generation producer,
the runtime transitions to block 3710 to execute the producer.
Then the runtime marks any parents that have an absorbing
subscription dependency on the executed producer as incom-
plete at block 3720. Next, the runtime invoke new stressed
producer commands for discovered producers, log, and pro-
cess the subscriptions at block 3730. Then the runtime adds to
the set of candidate producers based on producers newly
added to the execution start log at block 3740. The runtime
then transitions to entry point A.

If the producer is a dependency declaration producer, the
runtime prepares the dependency determination producer at
block 2225. Then the runtime executes the dependency deter-
mination producer to resolve any unresolved dependencies
ready to be resolved at block 2230. Then the runtime invokes
new stressed producer commands for discovered producers,
log, and process subscriptions at block 2235. The runtime
adds producers newly added to the execution start log to the
set of candidate producers at block 2240. The runtime then
transitions to entry point A.

Referring to FIG. 35B, the runtime transitions from entry
point A to block 2245. At block 2245, the runtime marks
producers as executed and updates producer output caching
and instance caching as necessary. Furthermore, the runtime
adds any parent producers to the set of candidate producers to
be executed and marks as unexecuted. The runtime further
removes executed producers from the current sets of candi-
date and ready producers. From block 2245, the runtime
transitions into block 2250 to check if the set of candidate
producers is empty. If not empty, the runtime transitions to
block 2205 via entry point B to repeat the flow described
above. Ifthe set of candidate producers is empty, the runtime
transitions to block 2255 to check if all subscription have
been completed. If not, the runtime processes incomplete
absorbing subscription producers at block 2260 and then
returns to block 2205 via entry point B. Otherwise, that is all

10

25

30

40

55

90

subscriptions have been completed, the runtime transitions to
block 2248. In block 2248, the scenario tracking structure is
scanned, and all instance path tracking structures are
released. Then, the runtime transitions to block 2265 to end
the flow.

Procedural Languages

As previously indicated, properly written procedural lan-
guage, non-reflective object-oriented language, and non-re-
flective object-based language code may be transformed into
reflective object-oriented language code. By way of example,
a class may be emulated through a data structure and a set of
static functions having as a first parameter a pointer to an
instance of the data structure. Among these functions are the
constructor and the destructor. The constructors are invoked
by the runtime after allocation of a pointer to a data structure
and provide defaults for elements in the data structure, and the
destructors are invoked by the runtime before the release of a
pointer to the data structure. Each class has its description
through a file that includes: 1) the data structure; 2) another
structure describing the class, holding the size of the structure
and a set of pointers to functions; 3) a list of static functions,
with their code (for non-reflective object-oriented languages
and non-reflective object-based languages, the code of static
functions would be generated automatically by scanning
methods ofthe real class, and creating for each method a static
function that performs the effective invocation of the related
method); and 4) annotations on top of each function (com-
ments hold producer dependency declarations), along with
their type (constructor, destructor, property, etc.) In addition
to this definition of a class in the procedural, non-reflective
object-oriented, or non-reflective object-based language,
dynamic invocation is also implemented. Specifically, a com-
piler generates the following initialization code for each
class, code that is called once (by the new class module) to: 1)
instantiate the structure describing the class, fill the pointers
to functions with the effective static functions; 2) register the
instance of this structure with a map of classes (the class
tracking structure) with a key corresponding to the class
name; and 3) register all pointers to functions in a map of
functions (the method tracking structure) with a key corre-
sponding to the function name (along with ArgumentDepen-
dencies, SequencingDependencies, FieldDependencies,
UpwardDependencies, WeaklyConstrainedDependencies,
output class key, and additional annotations). The mapping
allows for implements in the runtime of generic invocation
functions capable of: 1) instantiating an instance of a class by
name (by the new instance module) (specifically, the runtime:
a) allocates memory according to the size of the data struc-
ture, and adds a header to the pointer in order to store a pointer
to the structure describing the class, and implements therefore
smart pointers (e.g., pointers capable of querying their types);
and b) invokes the proper constructor functions after retrieval
of the relevant pointer to the static function from the map);
and 2) invoking a method by name provided all parameters
are passed properly after retrieval of the relevant pointer to the
static function from the map. Passing properly parameters to
functions identified by pointers to functions would be done
through assembly language, pushing and popping elements
on/from the stack for input and output parameters. The
method described above assumes the existence of the notion
of'data structures and the existence of the notion of pointers to
functions in the procedural, non-reflective object-oriented, or
non-reflective object-based language.

US 9,201,766 B2

91
Exemplary Object-Oriented Source Code Syntax
A. Client Code
In one embodiment of the invention, the client code takes
on the following syntax (shown in header form:

ProducerKey
New (String ClassKey, InstanceKey InstanceKey,
String MethodKey);

Runtime
New
AddProducerOfInterest
SetProducerOutput

(ProducerKey ProducerOfInterestKey);
(ProducerKey ProducerToOverrideKey,
Object
ProducerOutputInstance);

@F

Execute

ProducerKey and Runtime are classes, while New, AddPro-
ducerOfInterest, SetProducerOutput, and Execute are meth-
ods. AddProducerOflnterest causes invocation of the new
producer command with the appropriate values for the pro-
ducer of interest situation in Table 2. ProducerOutputlnstance
is an instance of the overridden producer output class. It is
thus instantiated through the corresponding producer output
class constructor.

B. Statements

1. Dependency Declaration Statement Syntax

argumentDependency="Argument1Dependency;
Argument2Dependency; . .. ”;

fieldDependency="FieldDependency1;FieldDepen-
dency2;...”;
sequencingDependency="SequencingDependencyl;Se-
quencingDependency?2; . .. ”;
upwardDependency="UpwardDependencyl;UpwardDe-
pendency2; .. .”;
weeklyConstrainedDependency="WeeklyConstrained
Dependencyl; WeeklyConstrainedDependency2; . . .
unConstrainedDependency="unConstrained
Dependencyl;unConstrainedDependency2; . . .

2. Dependency Syntax

a. fieldDependencyX, sequencingDependencyX, upward-
DependencyX, weeklyConstrainedDependencyX,
unConstrainedDependencyX Syntax:

#C:“ClassKey’::#I: ‘InstanceKey’: :#M:‘MethodKey’

b. argumentXDependency syntax:

ArgumentID::#C:‘ClassKey’::#]:“InstanceKey’::#M:
‘MethodKey’

In one embodiment of the invention, the ArgumentID is omit-
ted in the syntax, and the order in which the argumentDepen-
dencies have been declared represents the ArgumentID. The
ArgumentID is thus added to enhance readability.

3. Shortcut and Non-Shortcut
The syntax is the same as for a non-shortcut, but usage of #S::
prior to the producer key indicates a shortcut.

a. fieldDependencyX, sequencingDependencyX, upward-
DependencyX, weeklyConstrainedDependencyX,
unConstrainedDependencyX Syntax:

#S::#C:‘ClassKey’::#1: ‘ InstanceKey’::#M: ‘MethodKey’

b. argumentXDependency Syntax:

ArgumentID::#S: #C:*ClassKey’::#]:‘InstanceKey’ :: #M:
‘MethodKey’

In this case, the producer key indicated by the dependency is
not a dependency determination producer. Other syntax
implementations may assume that the shortcut is the default
dependency for a certain dependency type (such as field), and
omit the #S:: In that case a #DDP may be used to indicate the
presence of a DDP.

10

15

20

25

30

35

40

45

50

55

60

65

92

4. Contingent and Non Contingent
As previously descried, a <P> may be placed prior to a con-
tingent element.

a. Example of contingent class and method:

1) fieldDependencyX, sequencingDependencyX,
upwardDependencyX, weeklyConstrainedDepen-
dencyX, unConstrainedDependencyX Syntax:

#C:<P>*ClassDeterminationMethodKey’::#I:‘In-
stanceKey’ ::#M:
<P>*MethodDeterminationMethodKey’

2) argumentXDependency Syntax

ArgumentID::#C:<P>‘ClassDeterminationMethodKey’::
#1:“InstanceKey’::#M:
<P>*MethodDeterminationMethodKey’

b. Example of contingent method

1) fieldDependencyX, sequencingDependencyX,
upwardDependencyX, weeklyConstrainedDepen-
dencyX, unConstrainedDependencyX Syntax:

#C:*ClassKey’::#1: ‘InstanceKey ::#M:
<P>*MethodDeterminationMethodKey’

2) argumentXDependency Syntax:

ArgumentID::#C: ‘ClassKey’::#]: ‘InstanceKey’: :#M:
<P>*MethodDeterminationMethodKey’
c. Example of contingent instance

1) fieldDependencyX, sequencingDependencyX,
upwardDependencyX, weeklyConstrainedDepen-
dencyX, unConstrainedDependencyX Syntax:

#C:*ClassKey’::#I:

<P>‘InstanceDeterminationMethodKey’::#M: ‘Meth-
odKey’
2) argumentXDependency syntax

ArgumentID::#C: ClassKey’::#1:
<P>‘InstanceDeterminationMethodKey’::#M: ‘Meth-

odKey’
5. Shorthand Technique
Elements such as class, instance, or method that are consid-
ered to be identical to the parent producer elements are omit-
ted. This is typically the case for shortcut fields. The examples
given hereunder combine the shorthand technique and a
shortcut declaration (the shortcut is illustrated by a #S::)
a. Example where class and instance are omitted
1) fieldDependencyX, sequencingDependencyX,
upwardDependencyX, weeklyConstrainedDepen-
dencyX, unConstrainedDependencyX Syntax:
#S::#M:*MethodKey’
2) argumentXDependency Syntax:
ArgumentID::#S::#M:‘MethodKey’
b. Example where class is omitted
1) fieldDependencyX, sequencingDependencyX,
upwardDependencyX, weeklyConstrainedDepen-
dencyX, unConstrainedDependencyX Syntax:
#S::#1: InstanceKey’::#M: ‘MethodKey’
2) argumentXDependency Syntax:
ArgumentID::#S::#I: ‘InstanceKey’:: #M:‘MethodKey’

Alternative Embodiments

While the flow diagrams in the figures show a particular
order of operations performed by certain embodiments of the
invention, it should be understood that such order is exem-
plary (e.g., alternative embodiments may perform the opera-
tions in a different order, combine certain operations, overlap
certain operations, etc.)

While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the
invention is not limited to the embodiments described, can be
practiced with modification and alteration within the spirit

US 9,201,766 B2

93

and scope of the appended claims. The description is thus to
be regarded as illustrative instead of limiting.

What is claimed is:

1. A computer-implemented method for executing an
application program written in object-oriented code, the
method comprising:

generating and executing a first and a second producer

graphs, wherein a producer is a runtime instantiable
construct that includes an instance of a class and a
method of that class, wherein the first producer graph
includes a producer of interest and other producers inter-
connected to each other based on dependencies between
the producers, wherein the first producer graph and the
outputs of the producers of the first producer graph cor-
respond to a first scenario, wherein the second producer
graph corresponds to a second scenario reflecting a
change in the outputs of a set of one or more directly
impacted producers for the second scenario while pre-
serving the outputs of the producers in the first producer
graph, wherein the second producer graph has a copy of
at least the producer of interest, a copy of the set of
directly impacted producers with their outputs changed,
and a copy of any of the producers in the first producer
graph that are indirectly impacted because they are on a
path between the producer of interest and any of the one
or more directly impacted producers, and wherein the
generating and executing comprises:
instantiating the producer of interest as part of the first
producer graph, wherein the object-oriented code
includes methods and producer dependency declara-
tions, wherein the producer dependency declaration
for a given method identifies a set of zero or more
producers, and
automatically generating and executing a remainder of
the first producer graph through linking, and instan-
tiation as necessary, of other producers based on the
producer dependency declarations of the methods of
the producers already in the first producer graph.

2. The method of claim 1, wherein the method further
comprises:

receiving a reference scenario key identifying the first sce-

nario, a target scenario key identifying the second sce-
nario, information identifying the set of directly
impacted producers for the second scenario, and infor-
mation on the changes ofthe outputs of the set of directly
impacted producers.

3. The method of claim 1, wherein the generating and
executing comprises:

cloning the producer of interest and any of the impacted

producers which the producer of interest depends on to
create said copies.

4. The method of claim 1, wherein the generating and
executing further comprises:

executing the producer of interest;

generating the second producer graph; and

executing the copies of the indirectly impacted producers

and the copy of the producer of interest in the second
producer graph.

5. The method of claim 4, wherein the generating and
executing comprises:

creating the copies from the methods and corresponding

producer dependency declarations of the producer of
interest and the impacted producers which the producer
of interest depends on.

6. The method of claim 1, wherein the generating and
executing comprises:

5

10

20

25

30

40

45

50

65

94

overriding the outputs of the copy of the one or more
directly impacted producers in the second producer
graph.

7. The method of claim 1, wherein the generating and

executing comprises:

generating the output of the copy of the one or more
directly impacted producers in the second producer
graph based in part on the outputs of the respective
directly impacted producers in the first producer graph.

8. The method of claim 1, wherein the generating and
executing comprises:

linking one or more producers in the second producer
graph to one or more producers in the first producer
graph, wherein the one or more producers in the first
producer graph are not impacted by the one or more
directly impacted producers.

9. The method of claim 1, further comprising:

automatically determining a derivative using the output of
the copy of the producer of interest for the second sce-
nario and the output of the producer of interest for the
first scenario.

10. The method of claim 9, further comprising:

automatically and recursively determining at least one of
an N-th order derivative and a cross derivative using the
derivative, where N is an integer greater than one.

11. The method of claim 1, wherein the generating and
executing further comprises executing a stressed producer
generation producer to dynamically create at least one of the
producers in the second producer graph.

12. An article of manufacture comprising:

a non-transitory machine readable storage medium includ-
ing an application program, which when executed by a
set of one or more processors, cause operations includ-
ing,
instantiating a producer whose output is currently of

interest as part of a first producer graph, wherein
object-oriented source code of the application pro-
gram includes methods and producer dependency
declarations, wherein each producer dependency dec-
laration is for a specific method and is to identify at
run time a set of zero or more producers, wherein a
producer is a runtime instantiatable construct that
includes at least an instance of a class and a method of
that class;
automatically generating and executing a remainder of
the first producer graph through linking, and instan-
tiation as necessary, of other producers based on the
producer dependency declarations of the methods of
the producers already in the first producer graph;
executing the producer of interest, wherein the first pro-
ducer graph and the existing outputs of the producers
of the first producer graph correspond to a first sce-
nario; and
creating a second scenario reflecting a change in the
outputs of one or more directly impacted producers of
the first producer graph while preserving the existing
outputs of the producers in the first producer graph,
wherein the creating further comprises,
generating a second producer graph having a copy of
at least the producer of interest, a copy of the one or
more directly impacted producers with their out-
puts changed, and a copy of any of the producers in
the first producer graph that indirectly impacted
because they are on a path between the producer of
interest and any of the one or more directly
impacted producers; and

US 9,201,766 B2

95

executing the copies of the indirectly impacted pro-
ducers and the copy of the producer of interest in
the second producer graph.
13. The article of manufacture of claim 12, wherein the
creating the second scenario further comprises:
receiving a reference scenario key identifying the first sce-
nario, a target scenario key identifying the second sce-
nario, information identifying the one or more directly
impacted producers for the second scenario, and infor-
mation on the changes of the outputs of the one or more
directly impacted producers.
14. The article of manufacture of claim 12, wherein said
generating the second producer graph comprises:
cloning the producer of interest and any of the impacted
producers which the producer of interest depends on.
15. The article of manufacture of claim 12, wherein said
generating the second producer graph comprises:
creating the copy of the producer of interest and the
impacted producers which the producer of interest
depends on from the methods and producer dependency
declarations of each of the producer of interest and the
impacted producers which the producer of interest
depends on.
16. The article of manufacture of claim 12, wherein the
generating the second producer graph comprises:
overriding the outputs of the copy of the one or more
directly impacted producers in the second producer
graph.
17. The article of manufacture of claim 12, wherein the
generating the second producer graph comprises:

5

10

15

20

25

96

generating the output of the copy of the one or more
directly impacted producers in the second producer
graph based in part on the outputs of the respective
directly impacted producers in the first producer graph.

18. The article of manufacture of claim 12, wherein said
generating the second producer graph comprises:

linking one or more producers in the first producer graph to

the second producer graph, wherein the one or more
producers are not impacted by the one or more directly
impacted producer.

19. The article of manufacture of claim 12, the operations
further comprising:

automatically determining a derivative using the output of

the copy of the producer of interest for the second sce-
nario and the output of the producer of interest for the
first scenario.

20. The article of manufacture of claim 12, the operations
further comprising:

automatically and recursively determining at least one of

an N-th order derivative and a cross derivative using the
derivative, where N is an integer greater than one.

21. The article of manufacture of claim 12, wherein the
generating the second producer graph comprises executing a
stressed producer generation producer to dynamically create
at least one of the producers in the second producer graph.

22. The article of manufacture of claim 12, the operations
further comprising:

receiving an execute command, wherein the steps of

executing are performed responsive to the execute com-
mand.

